where, the independent noise tems(t) is taken as zero mean Qutput Feedback Linear Parameter

Gaussian with variance of “0.01.” Two cases for the disturbance . .
input being considered are as follows. War}””g (LPV) L,-gain Control
Case | A square wave disturbance of magnitude 2.0 and -a
period of 32 samples. The state estimates for this case are _as
shown in Figs. 1-5, where the solid line designates the estimafd@€-S. Hong
of the (UIKF), the dashed line is for theDEKF), and the small Mechanical Engineering Department, National Chung
circle designates the estimates of #i@NKF). The disturbance Cheng University, Chia-Yi 621, Taiwan, Republic of China
estimate of théDEKF) is shown by dashed line in Fig. 6 against
the true disturbance. TH®ONKF) represents the ideal conditions,
and therefore, it is taken as the reference of comparison for tﬁgsok Ra)f‘
other two filters. Table 1, gives the root mean square error L
(RMSE) of the (UIKF) and the(DEKF) state estimates using thee'ma”' axr2@psu.edu
state estimates of th@®NKF) as reference. )
Case IlI: A two sinusoids disturbance as follows: Vigor Yang

d(t)=2.0sinwt)+ 1.5 si2wt
® sirtw) sir(zwt) Mechanical Engineering Department, The Pennsylvania

with a fundamental period of 32 samples. The root mean SQUaER, e University, University Park, PA 16802, USA
estimation errors for this case are as given in Table 2. ’ ' '

It is clear from the results, shown in the figures and tables, that . . ) )
the (UIKF) provides faster and more accurate tracking of the sy$his brief paper synthesizes an output feedbagigain Control
tem states. In comparison, the estimates of(DEKF), although ~law for linear parameter varying (LPV) systems. The control law
sometimes smoother, they are much delayed and are orderdSggmbedded with an observer that does not require on-line mea-
magnitude less accurate than those of(thk<F). Moreover, com- surements of the_ scheduling parameter variation rate. Results of
parison of the RMSE, show tH&JIKF) to be less sensitive to the S|mulat_|on experiments are presented to evaluate the control law
type of disturbance acting on the system than @BEKF). The ON & simulation experiments on a two-degree-of-freedom mass-
estimation of the unknown disturbance input depends on the sygfing-damper system{DOI: 10.1115/1.1591805
tem structure, the influence of the disturbance on the states, and
the measurement scheme. Therefore, the detectability of the di@ywords: Linear Parameter Varying Control, Observer-
turbance is function of the tripldtA, B, C}. Embedded Synthesis, Linear Matrix Inequalities

5 Conclusion Introduction

The state estimation problem of linear dynamic systems influ- Dynamical systems often involve transients at different time
enced by both unknown deterministic disturbance inputs, as wellales. For control synthesis, the plant dynamics can be modeled
as random noise is treated. A new filter is developed which prby superposition of fast-time motions over the slow-time motions.
vides full state estimation and does not require the estimation ldirthermore, the two-time scale dynamics can often be decom-
the unknown inputs. The developed filter provides faster and mqsesed into fast-time perturbation over a quasi-steady equilibrium
accurate tracking of the system states than the augmented Kalrtrajectory (Tan et al., 200Q1]; Giannelli and Primbs, 200[2]).
filter which requires the estimation of the disturbance input. Als@he Linear Parameter VaryingPV) approach is suitable for two-
the estimation accuracy of the developed filter is less sensitivetime scale processes under wide range operation where control of
the type of disturbance acting on the system than the disturbaniee fast-time scale dynamics is gain-scheduled as a function of the
estimating Kalman filter. Moreover, the developed filter has constow-time scale paramete(Backard, 19943]; Hong et al., 2000
putational advantages as it does not rely on estimating the disti#}). From the numerical perspectives using Linear Matrix In-
bance inputs. equalities(LMIs), the LPV synthesis can be classified into two

broad categorieAlgebraicanddifferential A brief discussion on

the present status of LPV control in these two categories follows.
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mance is achieved within the operation domain by considering T T
algebraic LMI solutions at all vertices of the convex hull. These f ||Z||2dt<f [wl[dt+V(x(0)) = V(x(T))
approaches to LPV synthesis allow infinite variation rate of sched- 0 0
uling parameters within a narrow operating range. T
Differential LMI-based LPV synthesis have been reported by <f [w]?dt YT>0Vw,
several investigators including Wu et &l996 [9], Wu (2000 0
[10], and Tan and Grigoriadit2000 [5], as extensions of the that is identical to the performance specification in Ej
standard LMI synthesis procedu(@ahinet an_d Apkarian, 1994 If the storage functiotV(x,p) is structured to be positive qua-
[11], for example. In contrast to the algebraic LMI-based LPVdratlc as-
synthesis, the differential LMI-based LPV synthesis allows a finite
parameter variation rate for wide-range operation. V(x,p)=x"X(p)x; X=XT>0 Vp, (7)
This brief paper presents an observer-embedded LRgain
control law following the LPV synthesis reported by Hong et athen the Hamiltonian functiohi(x,u,w,p) becomes
(2000 [4]. The proposed control law allows parameterlzatlon of IX
feasible state feedback and state estimation in an observer-basegj(x u,w)=x" p X+ 2XTX(Ax+ Byw+ B,u) +x'CICx
control setting. Compared to other types of LPV synthe3|s ad- ap
dressed above, the main motivation of the work reported in this
paper is to develop an LPV,-gain control law that provides
plant state estimation and does not require on-line information Gbmbining Eqs(4) and (5) with Eq. (8) yields:
parameter variation rates.

+uTu—w'w. 8)

=—BJXX; W*=BJXx 9)
and then substituting Eq9) into Eqg. (8) yields
Observer-Embedded LPV L2-Gain Control Synthesis

Let the generalized model of a linear parameter varyligyV)
plant be represented as:

H(x,u* ,w*,p) =x"Qyx,

— X T T T T
Qx=p%+A X+XA+C]C;—XB,BJX+XB;BIX, (10)
Xx=A(p)x+By(p)w+By(p)u , o _

If Qx<0Vp, then Eq.(6) is satisfied and so is the performance

=Cy(P)x+Dyy(p)w+D1(p)u (1) specification in Eq(2).
Now let us consider the synthesis of the output feedback control
y=Ca(p)x+D2(p)W+Dyyp)u with an embedded observer designed as:
with the L,-gain performance specification: R=AX+ByW* +B,u+ZCl(y— CoR) (11)

that is structurally similar to the Kalman filter where the matrix
Z(p) is yet to be determined. The calibration for maximum dis-
turbanced* is chosen as:

Without loss of generality, the following simplifying assumptions R Toe

are made to communicate the main theme of the work reported in W* =B XX (12)
this paper:

T T
f||z||2dt<yzf [w]?dt YT>0Vw; x(0)=0 2
0 0

based on Eq(9). Defining the state error vect@=x—X, Eq. (1)
« The scheduling parametgris one-dimensional; is subtracted from Eq(11) to yield:

L] = = T = T = T: .
y=1,D1=0,C;1D1,=0, D1D1p=1, D2,B1 =0, £=(A+B,BIX—ZCJC,)%+ (B, — ZCID,yw— B;BIXx.
D21D21: | i D22: 0. (13)

The first assumption is extendable to(raultidimensional gain  Following Eq.(3), a Hamiltonian functiorH for the output feed-
scheduling parameter vector at the expense of additional numeyick is defined as:

cal complexity. The second set of assumptions can be removed by

a series of transformations among state, inputs and outputs. - dV(x,%)
Let us start with full state feedback control and define a Hamil- H(x.X,u,w,p)= dt

tonian functionH as:

1212 Iwif? (14)

By separating the storage functidf{x,p) into two parts as:

V(x,X,p)=x"X(p)x+X'Z Y(p)X; X=X">0; Z=2">0 Vp,
whereV(x,p) is a positive-definite function that stores the infor- (15)
mation of the current state. If the following two conditions on th% :

L nd using Egs.(1) and (13,
HamiltonianH, for ¢?H/gwau=0, hold: using  Egs. (1 (13

H(x,u,w,p)=V+||z]*— ] ®)

the Hamiltonian function
H(x,X,u,w,p) becomes:

IH 9*H -1

_ -0 _ . J
U (u=u*)=0; 22U (u=u*)>0; (4 H(x%uw)=x p—px+x pe X+ 2xTX(Ax+ By;w+ B,u)
oH 9%H TcTe.x+uTu—wT T7=1r (A4 T
aW(W:W*)ZO; &2W(W:W*)<0' ) +x ' CiCix+tu'u—w'w+2X' 2" [(A+BB; X

—ZCJCy)%+(B;—ZCID,)w—B,BIXx] (16)

with the minimum control & and themaximum disturbance Equations(4) and (5) are now extended for output feedback con-

then trol as:

HOGu™. W, p) <0, ©  Hexxuwp o PHOXuwp)
implies thatH (x,u* ,w,p) <0 Vw. This renders the following in- au (u=u™)=0; a%u (u=u")>0,
equality: a7)
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IH(X,X,u,w,p) L PHXXuwp)
T(W_W )—0, T(W_W )<0,
(18)
and then Eqs(16)—(18) yield to
wW* =B]Xx+(B;—ZCJD,) 2%, (19)

-1

P +Y IA+ATY 1+ Y7 iB,BIY 1-CJC,+ClC,
+S(p,p)=0 MAp Vp, (30)
X(p) =Y~ (p)<0, (31)
Q(p,p)—S(p,p)<0. (32)

However, unavailability of the full information on the current state

x prevents the minimum control from being chosen as:
=—BJXx. Instead, we choose* = —BJXX as the best approxi-
mation, using the available information of the estimated state
That is

u* =

—BIX(x=%) (20)

Substituting Eqs(19) and(20) into Eq.(16) and several algebraic
manipulations yield:

H(x,%,u* ,w*,p)=x"Qux+X'Q,X (21)

_a9X T T T T
Qu=p +ATX+ XA+ CIC1~ XBBIX+XB;BIX (22)

9zt
Q,=p 7 +Z YA+B;B]X)+(A+B;B]X)TZz"?*
—CJC,+XB,BIJX+27'B,B]Z"* (23)
Based on Eq(21), we have:
Qx<0; Q,<0; X=X">0; and Z=Z">0 (24)

that guarante#l (x,u* ,w,p)<0 VYw, which is equivalent to:
T T
f ||z||2dt<J w]2dt YT>0Vw,
0 0

and is identical to the performance specification in &).

Construction of Feasible Control and Estimation Laws

The addition of Egs(22) and(23) yields:
_OX 9zt

Qx+Qz= Da—p +p

+(Z27*+X)B,BJ(Z *+X)—CJC,+C,CT.

(25)

+H(ZTH+X)A+AT(Z7 1+ X)

ap

Let ap-dependent matri¥ be introduced and defined as:
Z7t=Y"t-X,
DenotingQy=Qx+Q,, we have

(26)

-1

)
Qy=p i +Y IA+ATY '+ v 1B,BIY1-ClC,+ClC,,
(27)
Thus, Eq.(24) becomes equivalent to:
Qx<0, Qy—Qx<0, and X—Y " 1<0; Vp Vp. (28)

The formulation of Eq(28) can be expressed as parameteriza-

tion in terms of a free pair of function-valued matric€¥p,p)
>0 andS(p,p)>0, as follows:

S OX 1 T T T SN
by +ATX+ XA+ CICy— XBBIX+XByBIX+ Q(p,) =0,
(29)

Journal of Dynamic Systems, Measurement, and Control

Any pair of positive-definite matrice€Q>0, S>0, which could
be dependent on both and p, determines a feasible observer-
embedded LP\L,-gain controller in terms oX>0, Y>0. The
features of the proposed LP,-gain control law are summarized
below:

» Feature I The internal structure of the feasible observer-
embedded LPVL,-gain controller can be realized in the
sense that increasin emphasizes control and increasig
emphasizes estimation.

» Feature 2 The allowable parameter variation rate should be
bounded if Eqs(29)—(32) yield feasible solutions. Specifi-
cally, Egs. (29 and (30) represent two partial differential
equations in terms of two independent varialgesdp with-
out specified boundary conditions. The pair of algebraic in-
equalities in Eqs(31) and (32) serve as constraints in the
searching domaifX, Y, R, 9. The solution of Eqs(29)—(32)
is strongly dependent on boundary conditions that can be
chosen as the freely regulated positive-definite matriees
andS.

» Feature 3 The control and estimation laws are parametri-
cally dependent on the scheduling parametéut not onp.

So, there is no need for on-line measurements of the param-
eter variation ratgd. Furthermore, the allowable parameter
variation rate is bounded, or leads pgdX/dp)+Q(p,p)

=0 that may no longer represent a parameter in an LPV
system.

Let the parameter variation rafebe bounded within a rectangle

B<p=<p, (33)

where{B, B} represents vertex of the rectangle, and the parameter
p is bounded by & p=< without losing the generality. In such
case, the following differential inequalities can be formulated to
help solve a feasible solution of Eq29)—(32):

p=

[ X —1, yw—1AT T -1cT ]
B +AX 1+XAT-B,B] X'C; B
CoX 1 -1 o |=®
I Bl 0o -]
Be{B.B}, (34)
. aY,l - - T . T-
B FY IA+ATY"1-cJc, Y 'B;y C;
_ <0;
BJY ! -1 0
C, 0o -]
Be{B.BY, (35)
vyt
RN E4 X~ '>0; Y >0, (36)
5-0>0; 5-0>0, (37)

where the nonconvex formulation consists of a set of differential
linear matrix inequalitiesLMIs) in Egs.(34)—(36) and a feasibil-
ity index in Eq.(37) with
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. ) 0.10
Q=- ( B—— +ATX+XA+C]C,— XB,BIX+XB,BIX], —— 112 PV L -Gain)
ap ) 0.084 reeeree LL2e (LPV Ly-Gain Estimate)
(38) 1 — GSH (Gain-Scheduled)
0.06y GSHe (Gain-Scheduled Estimate)
1 =
- . d Q
S=—(B +Y IA+ATY 14 y-1B,BIY ! &
ap g
&
—C3Co+ cIcl) . (39) 8
and similarly forQ andS. The inequalities in Eq(37) make the ‘
embedding of a feasible observer conservative relative to an LMI- o 5 10 15 20
based synthesis likeNVu, 2000[10]). A feasible solution of Egs. Time
(349—(37) is to be searched from the three convex differential
LMIs in Egs. (33)—(36) until Eq. (37) is satisfied. Fig. 1 First mass displacement with one-dimensional (1-D)

An LPV feasible solutionX1,Y 1) for Egs.(34)—(37) is con-  scheduling
sidered to be a perturbation of the inverse of gain-scheduled so-

lution (X5 1,Y5 1) via Fourier-sin series expansion as:

0.08
n p —— LL2 LPVLp-Gain)
X~ (p)=Xo H(p)+ 2, Xcsin(kp); Y~ (p) 0.081 [} T Gk GainScheduledy
k=1 2 GSHe (Gain-Scheduled Estimate)
. 2 0041
Q
Yo' (p)+ 2, Viesintkp), (40) 5 0.02]
= ]
B
where the solution X,,Yo) of Eq. (40) is the stable solution A 0.00
of the following two gain-scheduled Riccati equations for
ospsm: -0.02
T T T T -0.04 ; . .
ATXo+ XoA+CJC1—XoB,BI X+ XoB1B1Xo=0,  (41) 0 5 o 15 20
me
AYo+ YoAT+B1B] — YoCIC,Y o+ YoCiCiYo=0, (42) Fig. 2 Second mass displacement with 1-D scheduling
which can be solved based on the Riccati operator on proper
Hamiltonian matricegDoyle et al., 1988 12]) for Vpe[0,7].
Using the Fourier expansion in E0), it follows that the LPV 0.12 YT
; . . — -Gain
solution(X, Y) and the_ galn-scheduled solutioK,Y,) have the _ N LL2e (LPV ZLZ_GainEsﬁmme)
same boundary conditions at both ends of the parameter domain - —— GSH (Gain-Scheduled)
p=0 andp==. The numerical procedure to find a feasible solu- - AT GSHe (Gain-Scheduled Estimatc)
tion of Egs.(34)—(37) is presented as follows: 'é’ 0.04
~ [Step 1: Start atn=0. If the pair ()(’1,Y_’1)=(X51,Y51) sat- 2 0.0
isfies Eqs(34)—(37), then stop and the gain-scheduled solution is 2,
the choice among the feasible LPV solutions; else go to Step 2. E -0.04
[Step 2: Increasen by 1, [i.e., n—(n+1)]. Use a nurerical
tool (for example,mMATLAB LMI Toolbox) to obtain a feasible -0.08
solution of Egs.(34)—(36) in terms of the decision matrices
—-1 -1 -0.12 . . . . A
XO (p)lxllXZ an .YIO .(p)inlYZ Yn - . . ) 2 4 6 8 10 12 14 16
[Step 3J: If the feasibility index of matrix pairs$—Q,S—Q) is Time

positive definite as in Eq:37), then stop; else go back to Step 2.
[Step 4: Having positivity of the feasibility index in Step 3, if Fig. 3 First mass displacement with 2-D scheduling
a feasible solution is found to satisfy Eq84)—(36), then stop
and this solution is the choice among the feasible LPV solutions;
else go back to Step 1 to obtain a feasible solution for the revised

robust performancéi.e., nominal performance plus stability ro- 0.12 " LL2 (LPV L; -Gain)
iteri i nEa) TN e 112e (LPV L3-Gain Estimate)
bustneskcriteria of the generalized plant in E€L). 0.08 Pt M A
LT GSHe (Gain-Scheduled Estimate)

Simulation Experiments E 004 S4

This section presents the results of simulation experiments to g 0.00
elucidate LPVL,-gain control design. The set of simulation ex- %
periments is based on an exact modiet., with no modeling 2 -0.041
uncertaintiesof a two-degree-of-freedom mass-spring-damper vi- /A
bration system with varying damping and stiffness under exog- -0.08
enous inputs of plant disturbances and sensor noise. The mean

values of the first mass, second mass, first damping coefficient, -0.12
second damping coefficient, first spring constant, and second

spring constant are set aty=1; my,=1; {;=0; {,=0; k;=1;

andk,= 3, respectively. The control law processes (measurel Fig. 4 Second mass displacement with 2-D scheduling

0 2 4 6 8 10 12 14 16
Time
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absolute variation rate of 0.25. The remaining four paramete‘?éma'l' Nicolas.Marchand@inpg.fr
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Summary and Conclusions In this paper, a receding-horizon control, using systematic projec-
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