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This paper presents the design of a robust feedback controller for suppressing combustion instabilities in
propulsion systems with distributed actuators. The control synthesis procedure is based on the H`-optimization,
which guarantees robust stability and performance within specified uncertainty bounds by taking into account
the effects of unmodeled dynamics, sensor noise, and parametric errors. It makes use of an observer structure
for robust estimation of combustion dynamics, and an H` loop-shaping for performance requirements. Results
of simulation experiments are presented to show how longitudinal pressure oscillations can be suppressed in a
generic combustion chamber. The closed-loop control system exhibits robust stability and performance in the
presence of exogenous disturbances and parametric errors. © 1999 by The Combustion Institute

NOMENCLATURE

A System parameter of generalized plant
Ap System parameter of nominal plant
a# Speed of sound in mixture
bk Spatial distribution of burning of

control fuel at kth location
C# v Constant-volume specific heat for two-

phase mixture
Dni Linear parameters, Eq. (12)
d Plant disturbance
Eni Linear parameters, Eq. (12)
e Internal energy
DHc Heat of combustion of control fuel
h Source term in wave equation
I Identity matrix
J Cost functional
K Dynamics of robust controller
L Length of combustor
ṁin Mass flow rate of control fuel
P Dynamics of generalized plant
p Pressure
Q Rate of energy release in gas phase
q Conductive heat flux
q Weighting factor of plant dynamics
R# Gas constant for two-phase mixture
r Weighting factor of control action
r Position vector
s Independently complex variable in

frequency domain
T Temperature

t Time
u Control output of secondary-fuel

injector
V Volume of combustion chamber
n Input vector associated with distributed

control source
Un Control input of nth mode
vg Velocity of gas phase
Wd Shaping filter associated with plant

disturbance
Wp Performance weighting function

associated with pressure response
Wu Performance weighting function

associated with control fuel
Wt Stability weighting function associated

with time-delay errors
Wu Shaping filter associated with sensor

noise
w Generic disturbance; w 5

[ws
T wd

T wu
T wt]T

wd Weighted plant disturbance
ws Disturbance induced from plant

uncertainty
wt Disturbance induced from model error

of time-delay function
wu Weighted sensor noise
ẇc Burning rate of control fuel
x State vector of generalized plant
xp State vector of nominal plant
y Sensor output vector
z Objective variable; z 5 [zs

T zp
T zu zt]T

zs Stability variable associated with plant
uncertainty

zu Performance variable associated with
control fuel
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zp Performance variable associated with
pressure response

zt Stability variable associated with time-
delay errors

Greek Symbols

r Density of two-phase mixture
wn Normal mode function of nth mode
h Amplitudes of mode shapes
hn Time-varying amplitude of nth mode
D Uncertainty operator of robust

performance
Dp Plant model uncertainty
Dt Phase uncertainty induced from time-

delay errors
dp Uncertainty bound of plant model
dt Uncertainty bound of time delay
g# Specific heat ratio for mixture
u Sensor noise
vn Normal frequency of nth mode
tk Time delay of kth combustion control

source
tv Viscous stress tensor

Superscripts

z Time derivative
# Mean quantity
NL Nonlinear term
9 Fluctuation
T Transpose

Subscripts

c Control input
g Gas phase
, liquid phase

INTRODUCTION

The use of feedback control techniques to mod-
ulate combustion processes in propulsion sys-
tems has recently received extensive attention
[1–3]. Most of the previous studies involve
direct implementation of control techniques
originally designed for mechanical devices, and
very limited efforts have so far been devoted to
the treatment of uncertainties due to unmod-
eled dynamics and parametric errors. It is well
established that the intrinsic coupling between
flow oscillations and transient combustion re-

sponses prohibits detailed and precise modeling
of the various phenomena in a combustion
chamber. All the existing models are subject to
uncertain dynamics and parametric errors re-
sulting from simplifying assumptions about the
physical processes and the associated mathe-
matical approximations. This paper presents a
robust feedback controller for suppressing com-
bustion instabilities in propulsion systems. Em-
phasis is laid on the treatment of model uncer-
tainties, plant disturbances, and sensor noises
for the tradeoff between robust stability and
performance.

A variety of feedback-control techniques,
summarized in Table I, have been used for
suppressing combustion instabilities. The most
primitive type is the proportional (P)-controller
in a single-input and single-output (SISO) set-
ting, in which stability and performance are
achieved only by an operational amplifier be-
tween the sensor and actuator. The P-controller
can be extended to form a proportional-inte-
gral-derivative (PID) control system, in which
the I-control is used for achieving zero steady
error, since it integrates the error in time, and
the D-control serves to enhance the transient
response, since it regulates the tendency of
motion [4]. Conceptually, there are only three
control parameters in a single PID controller
module, so that the controller design is greatly
simplified. However, for high-order plant dy-
namics, such a low-order controller may not
satisfy various performance requirements. For
linear systems, a PID controller can be extended
to accommodate a filter with phase compensa-
tion in the frequency domain, or to form an
integral state-feedback controller in the time
domain. If all states cannot be measured, an
observer is needed for output-feedback control
[5, 6]. It is not difficult to design an observer for a
finite-dimensional linear time-invariant (FDLTI)
system, but it is much more challenging to design
one for a time-varying or nonlinear system.

In the frequency domain, the open-loop dy-
namics of an FDLTI system can be conveniently
represented by the Bode plot, through either
physics-based modeling or system identification,
or a combination of the two [1, 7–12]. The
representation of system dynamics in the fre-
quency domain simplifies the filter design, and
the stability analysis can be based on the
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Nyquist criterion. The robustness of a controller
is traditionally predicted in terms of phase and
gain margins for single-input single-output
(SISO) systems. When uncertainties are simul-

taneously present in both phase and gain, the
issue of robustness can be expressed by the
H`-based structured singular value (m) of the
closed-loop system [13–15].

TABLE 1

Survey of Active Combustion Control Techniques

Control
Technique Application References Remarks

PID design nonlinear generic Fung and Yang [4] 1. Easy to adjust control parameters.
combustion instability 2. May not fulfill various performance

requirements.

Bode-Nyquist
frequency
domain design
and root locus

Generic combustion
instability

Bloxsidge et al. [7] 1. Easy to identify systems and design
controller in frequency domain.

Low-frequency combustion
instability

Langhorne et al. [8] 2. Fail in time-varying and nonlinear
systems.

Low-frequency combustion
instability

Fung et al. [1] 3. Only for SISO, can be more general in
H` and m control.

Coaxial dump combustor Shadow et al. [9] 4. Controllability and observability can not
be predicted.

Longitudinal combustion Gulati and Mani [10] 5. Easy for filter design.
instability in premixed
combustor

6. Can serve as the basis of phase-lead and
phase-lag compensator design.

Thermoacoustic instability Annaswamy and
Ghoniem [11]

Liquid-fueled combustion
systems

Hantschk et al. [12]

Observer-based
design: adaptive

Thermoacoustic instability
in rocket motor

Yang et al. [5] 1. Nominal model-based observer can be
extended to optimal LQG regulator.

observer and
model-based
observer

Longitudinal combustion
instability

Neumeier and Zinn [6] 2. Adaptive observer has no guarantee of
convergence; its algorithm is one branch
of the gradient iterative rules.

LQR and LQG
control

Thermoacoustic instability
in premixed laminar
combustor

Annaswamy et al. [11] 1. LQR control has optimal and robust
properties of gain and phase margins,
but requires measurements of all states.

2. LQG control has no robust property
and is used only for rejection of
intensity-known noise.

LMS adaptive
and neural
network back
propagation

Generic combustion
instability

Billoud et al. [18] 1. Sensitive to initial conditions and
gradient dynamic parameters.

Boiler combustion systems Allen et al. [19] 2. Has similar algorithm in System ID.
Dump combustor Kemal and Bowman [20] 3. May be replaced by off-line ID plus
Large-scale solid rocket

motor
Koshigoe et al. [21] Bode-Nyquist or observer-based

controller.

Fuzzy logic
control

Longitudinal combustion
instability

Menon and Sun [22] 1. Only effective when many states can be
sensored.

2. Need experience to set up logic rules
and scales.

3. Not used solo.

Lyapunov-based
design

Generic combustion
instability

Krstic [28] 1. Need more generalized control
algorithms.

2. Nonlinear H` control is based on
Lyapunov design, but with general
algorithms.
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Among the various time-domain tools for
controller design, the linear quadratic regulator
(LQR) controller appears to be the most robust,
with its gain margin in the range of [1/2, `) and
at least 60° phase margin [16]. However, the
LQR controller can be applied only if all the
states can be measured without any appreciable
noise contamination. Otherwise, a state estima-
tor is needed to meet this requirement. The
resulting output-feedback control system is
known as the linear quadratic Guassian (LQG)
controller, if a Kalman filter is used as the state
estimator. The scheme may be further extended
for nonlinear systems using an energy method in
terms of the Lyapunov function. The major
deficiency of the LQG technique lies in its
failure to guarantee any gain and phase margin
[17]. The H`-based structured singular value
(m) approach allows for quantification of robust
stability and performance for bounded uncer-
tainties [14].

Non-model-based controllers, such as least
mean square (LMS) and artificial neural net-
work back-propagation adaptive controllers,
employ iterative approaches to update control
parameters in real time [18–21]. However,
those methods often encounter difficulties of
numerical divergence and local optimization,
and consequently may not guarantee stability
and performance. In addition, most adaptive
algorithms do not accommodate a physical
model of plant dynamics. It is often risky to
establish general rules for performance im-
provement and fault diagnostics based on ap-
proximate reasoning, such as fuzzy logic [22].
Moreover, formulation of fuzzy logic rules re-
quires an extensive physical understanding and
operations experience that is not usually avail-
able for combustion dynamics.

While the control schemes summarized in
Table I have been employed in various combus-
tion problems with some success, direct imple-
mentation of these techniques on practical pro-
pulsion systems may not be feasible, due to lack
of robustness, reliability, and operationability.
Compared with mechanical devices, a combus-
tion chamber with feedback control of fuel
burning exhibits several distinct features [1]:

● distributed actuation arising from the burning
of injected fuel;

● time lag associated with the complex chain of
fuel injection-atomization-ignition-combus-
tion processes;

● intensive noise due to intrinsic fluid dynamic
and combustion unsteadiness;

● time variation of mean flow conditions due to
transient operation of the chamber; and

● model uncertainties and parametric errors
resulting from physical assumptions and
mathematical approximations employed for
simulating system dynamics.

In view of the above, this paper uses the H`

theory [13] to design a robust feedback control
scheme for suppression of combustion instabil-
ities. The controller provides robust stability
and performance relative to specified bounds of
model uncertainties, parametric errors and ex-
ogenous disturbances (e.g., chamber perturba-
tions and sensor noise). The control law can be
extended over a wide range of operating condi-
tions.

The outline of this paper is as follows. First, a
theoretical model of unsteady motions in a
combustion chamber with feedback control is
formulated. The formulation is based on a
generalized wave equation that accommodates
the effects of acoustic waves and combustion
dynamics. Control actions are achieved by in-
jecting secondary fuel into the chamber accord-
ing to the instantaneous flow conditions. Physi-
cally, the reaction of the injected fuel with the
primary combustion flow produces a modulated
distribution of external forcing to the oscillatory
flow field, and can be conveniently modeled as
an assembly of point actuators. After a proce-
dure equivalent to the Galerkin method, the
governing wave equation reduces to a system of
ordinary differential equations with time-de-
layed inputs for the amplitude of each acoustic
mode, serving as the basis for the controller
design.

The second part of the work involves formu-
lation of a robust feedback control law. The key
issues in the control analysis and synthesis are:
(i) treatment of parametric uncertainties, time
delays, and unmodeled dynamics; and (ii) rejec-
tion of exogenous disturbances (e.g., chamber
perturbations and sensor noise). A series of
simulation experiments are conducted to exam-
ine the robust stability and performance of the
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closed-loop control system. The relationships
among the uncertainty bound of system dynam-
ics, the response of flow oscillations, and the
controller performance are investigated and
quantified.

MODELING OF COMBUSTION DYNAMICS

The combustion system under consideration is
shown schematically in Fig. 1, which represents
a generic model for several types of air-breath-
ing combustors, such as those used in ramjet
and gas-turbine engines. Fuel and oxidizer are
delivered to the combustion chamber, in which
large excursions of unsteady motions take place
due to the internal coupling between flow oscil-
lations and transient response of combustion.
The strategy described by Fung et al. [1] is
followed for robust closed-loop control of com-
bustion instabilities. First, the instantaneous
chamber conditions are monitored by sensors at
sufficiently high sampling rates to capture the
transient characteristics of unsteady motions.
The sensor signals are then processed by a
controller to modulate the mass flow rate of a
secondary supply of fuel. Finally, the injected
fuel reacts with the combustor flow as it travels
downstream, exerting a distribution of external
influences on the oscillatory flowfield for insta-
bility control.

The formulation of combustion dynamics is
constructed using the same approach as that
employed in previous works on state-feedback
control with distributed actuators [1, 4]. In
essence, the medium in the combustion cham-
ber is treated as a two-phase mixture. The gas
phase contains inert species, reactants, and
combustion products. The liquid phase is com-
prised of fuel and/or oxidizer droplets, and its
unsteady behavior is modeled as a distribution
of time-varying mass, momentum, and energy

perturbations to the gas-phase flowfield. If the
droplets are taken to be dispersed, the conser-
vation equations for a two-phase mixture is
written in the following form, involving the
mass-averaged properties of the flow:

mass
­r

­t
1 vg z ¹r 5 W (1)

momentum r
­vg

­t
1 rvg z ¹vg 5 2¹p 1 F

(2)

energy
­p
­t

1 g# p¹ z vg 5 2vg z ¹p 1 P (3)

where

W 5 2r¹ z vg 2 ¹ z ~r,dv,! (4)

F 5 ¹ z tv 1 dF, 1 dv,v# , (5)

P 5 ~R# /C# v!@Q 1 dQ, 1 ¹ z q 1 dv, z F, 1 $~h,

2 eg! 1 1/ 2~dv,!
2%v# , 2 C# vTg¹ z ~r,dv,!#

(6)

and dv, 5 v, 2 vg, dh, 5 h, 2 C,T. The
subscripts g and , signify the mass-averaged
quantities for the gas and liquid phases, respec-
tively, and r is the density of the mixture. The
viscous stress tensor and conductive heat flux
vector are represented respectively by tv and q.
The energy Q is released by homogeneous
reactions in the gas phase. The force of interac-
tion and energy transfer between gas and liquid
are dF, and dQ,, respectively.

Whatever physical means are devised, control
inputs must be mathematically treated as forc-
ing functions in the above conservation equa-
tions. Therefore, Eqs. (1)–(3) are modified by
adding control inputs Wc, Fc, and Pc on the
right-hand sides. The subscript c represents the
variables manipulated by the controller. The
effects of heat release from the injected second-
ary fuel, Pc, takes the form

Pc 5
R#

C# v
Qc 5

R#

C# v
ẇcDHc, (7)

where Qc stands for the rate of energy release in
the gas phase, ẇc for the burning rate of the
control fuel (mass/time-volume), and DHc for
the heat of combustion per unit fuel mass.

Fig. 1. Schematic Diagram of Feedback Control System
with Distributed Actuators.
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A wave equation governing the unsteady mo-
tions is then derived by decomposition of all
dependent variables as sums of the mean and
fluctuation parts. Thus

r 5 r# 1 r9~r, t!; vg 5 v# g~r! 1 v9g~r, t!;

p 5 p# 1 p9~r, t! (8)

Substituting Eq. (8) into Eqs. (1)–(3), collecting
coefficients of like powers, and rearranging the
results yields the following wave equation in
terms of pressure fluctuation:

¹2p9 2
1
a# 2

­2p9

­t2 5 h 1 hc (9)

where h contains all physical processes of acous-
tic motion, mean flow, and combustion under
conditions with no external forcing. The explicit
expression is given by Fung [23].

The control source hc arising from combus-
tion of the injected fuel can be treated as a
distributed actuator, with its spatial distribution
approximated by an array of M discrete sources
[1]. With the use of a generalized time-lag
theory, the fuel control is expressed as:

hc 5 2
R# DHc

a# 2C# v
O

k51

M ­ṁin~t 2 tk!

­t
bkd~r 2 rk!

(10)

where ṁin stands for the mass flow rate of the
injected fuel. The time delay, tk, is the time at
which an element of fuel burns at the kth
combustion source, measured from the instant
of its injection. The spatial distribution param-
eter, bk, shown in Fig. 2, measures the fraction
of the control fuel currently burning within the
volume represented by the kth combustion
source, located at rk. Conservation of mass
requires that ¥k51

M bk 5 1.

Since the source terms in the wave equation
(9) and its associated boundary conditions are
treated as small perturbations to the acoustic
field, within second-order accuracy, the solution
can legitimately be approximated by a synthesis
of the normal modes of the chamber with
time-varying amplitudes hn(t).

p9~r, t! 5 p# O
n51

`

hn~t!wn~r! (11)

where wn is the normal mode function. After
substituting Eq. (11) into Eq. (9), and applying
a spatial-averaging technique equivalent to the
Galerkin method [24], the following system of
equations is obtained for the temporal evolution
of each mode.

ḧn 1 vn
2hn 1 O

i51

N

@Dniḣi 1 Enihi#

1 Fn
NL~h1, h2, · · · ḣ1, ḣ2 · · · !

5 Un~t! 1 dn~t!, n 5 1, 2, · · · N (12)

where dn(t) denotes plant disturbances. The
coefficientsi Dni and Eni arise from linear pro-
cesses and are modeled as frequency-dependent
variables. The function Fn

NL represents all non-
linear effects of gasdynamic coupling and com-
bustion response. The control input to the nth
mode takes the form

Un~t! 5
R# DHc

C# vp# V O
k51

M ­ṁin~t 2 tk!

­t
bkwn~rk! (13)

The state of the acoustic field must be deter-
mined to complete the formulation. In the
present study, the instantaneous pressure oscil-
lation is monitored by a finite number of point
sensors, located at positions rsi . The output
signal of each sensor becomes:

yi~t! 5 p# O
n51

N

hn~t!wn~rsi! 1 ui (14)

where ui is the measurement noise with respect
to the ith sensor.

The formulation described above provides a
useful framework for treating feedback control
of combustion instability. However, direct appli-
cation of the model to practical problems must
be performed with caution, because of the fol-

Fig. 2. Spatial Distribution of Actuator Output
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lowing uncertainties, which arise in the devel-
opment of a robust control law.

● Uncertainties in modeling combustion dynam-
ics: The intrinsic complexities in combustor
flows prohibit precise estimation of system pa-
rameters, such as Dni and Eni in Eq. (12), and
time delays tk’s and spatial distribution bk’s in
Eq. (13), without considerable errors. Further-
more, the model may not accommodate all the
essential processes and involves uncertainties
because of the physical assumptions and math-
ematical approximations employed.

● Uncertainties in model reduction: The finite-
dimensional model in Eq. (12) is truncated
from the infinite-dimensional wave equation.
This truncated model is used for the control-
ler design, and the dynamics of the unmod-
eled high-frequency modes are treated as part
of model uncertainties.

● Uncertainties in geometric-configuration and
boundary-condition specifications: The com-
bustor geometry and boundary conditions de-
termine the effectiveness of the truncated
model for controller design. The difference
between geometry of the real combustor and
that of the model therefore is a source of
uncertainties. In addition, variations in
boundary conditions due to environmental
changes cause additional uncertainties.

● Uncertainties in operating conditions: The
model parameters depend on the mean-flow
conditions that are determined by the oper-
ating range of the combustion chamber. An
uncertainty is included in the model to take
into account wide-range operations.

To facilitate the robust controller design, the
above sources of uncertainties are lumped to-
gether into two full block uncertainties; one is
associated with the combustion dynamics and
the other with the distributed process of the
control fuel. To this end, the plant dynamics
equations (12)–(14) are modified to include
uncertainties and are represented by the follow-
ing state-space model:

ẋp 5 ~ Ap 1 Dp!xp 1 G1n 1 G2d
(15)

y 5 Cxp 1 u

where xp 5 (jT j̇T)T with j̇ 5 h, and h [ [h1,
h2, . . . , hN]T. The nominal linear system matri-
ces are:

Ap ; F 0 I
2V 2 E 2D G (16)

where V ; diag~v1
2, v2

2,. . . ,vN
2 !

The input vector n(t) associated with a set of
point actuation is related to the mass injection
rate of the secondary fuel, ṁin, as

n~t! 5 3
b1ṁin~t 2 t1 2 dt1!
b2ṁin~t 2 t2 2 dt2!···bMṁin~t 2 tM 2 dtM!

4 (17)

where dt is the model error of the time-delay
function. Equation (17) represents the actuator
dynamics arising from the combustion of the
injected control fuel, and its nominal transfer
function is of the form:

A~s! 5 @b1e2t1s b2e2t2s · · · bMe2tMs#T (18)

The uncertainties associated with the spatial
distribution bi of the control source is not
considered herein, for the sake of simplicity, but
can be treated following the same procedure.
The model and parametric uncertainties are
represented by a differential operator Dp, and
can be properly treated as disturbances of the
plant, ws(t) 5 Dp(xp(t)). The bound of the
operator Dp is characterized by the induced
L2-gain (which is also the H`-gain for linear
time-invariant systems) as:

iDpi` , dp (19)

Physically, the above equation implies that the
dynamics of the uncertainty operator yields an
energy-amplification relationship from its input
xp to output ws as follows:

E
0

T

iwsi2 dt , E
0

T

dp2ixpi2 dt ; T [ @0, `!

(20)

DESIGN OF ROBUST FEEDBACK
CONTROLLER

This section describes how the stability and
performance of a robust feedback controller
can be achieved using the following two building
blocks.
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1. Construction of a generalized plant model: The
generalized plant model P(s) augments the
nominal model of the plant dynamics by
including model uncertainties and perfor-
mance weights;

2. Synthesis of an H` controller: A robust con-
troller K(s) is developed to guarantee stabil-
ity and performance based on the general-
ized plant model.

Generalized Plant Model

Figures 3 and 4 show how the generalized plant
model P(s) interacts with the robust feedback
controller K(s) that processes the (pressure)
sensor output y to generate the mass flow rate
ṁin of the injected control fuel. The major role
of K(s) is to regulate the energy amplification
from the generic disturbance w to the objective
variable z. Note that w consists of disturbances
induced by plant uncertainties ws and modeling
errors of the time delay function wt, weighted

plant disturbances wd, and weighted sensor
noise wu. The objective variable z consists of
stability variables associated with the plant un-
certainty zs and time-delay error zt, and perfor-
mance variables associated with the pressure
oscillations zp and control-fuel injection zu.

The generalized plant includes the following
subsystems: the nominal plant model specified
in state space realization, ( Ap, G1, G2, C);
shaping filters associated with plant distur-
bances and sensor noise, Wd(s) and Wu(s);
performance weights associated with pressure
oscillations and control-fuel injection, Wp(s)
and Wu(s); and stability weight Wt(s) associ-
ated with time delay errors. The plant uncer-
tainty operator Dp and the phase uncertainty
operator induced by the time delay errors Dt are
not included, since model uncertainties have
been represented as uncertainty-induced distur-
bances, ws and wt. The shaping filters, Wd(s)
and Wu(s), are incorporated to characterize the
frequency responses of the plant disturbances
and sensor noises. The two performance weights,
Wp(s) and Wu(s), are specified for the desired
frequency response of acoustic motion and con-
trol-fuel injection to achieve a trade-off between
the transient and steady-state responses.

Design of H` Controller

The plant uncertainty operator Dp acts as an
internal feedback, incorporating the effects of
inaccuracies in the combustion dynamics model.
The bound of Dp is specified in Eqs. (19) and
(20). Based on the small-grain theorem [25, pp.
217–218], the necessary and sufficient condition
of robust stability in the absence of plant distur-
bances (i.e. d 5 0), sensor noise (i.e., u 5 0),
and time-delay uncertainty (i.e., wt 5 0 or
equivalently dt 5 0) is:

E
0

T

izsi2 dt # E
0

T

iwsi2 dt

; ws [ L2@0, T# ; T [ @0, `! (21)

for the zero-state initial conditions with zs [
dpxp.

The parametric error of time delay dt in
modeling the distributed combustion of the
injected secondary fuel induces an infinite-di-

Fig. 3. Generalized Plant Model of Combustion Dynamics.

Fig. 4. Compensated Generalized Plant
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mensional uncertainty, which is treated in the
frequency domain. The non-rational transfer
function e2dts of time delay is treated as a
multiplicative uncertainty:

$~1 1 Dt~ jv!Wt~ jv!:iDt~ jv!i # 1% (22)

where Dt( jv) accounts for the phase uncer-
tainty and the magnitude of the perturbation is
specified by the weight Wt( jv). The normalized
perturbation satisfies:

ue2dtjv 2 1u # uWt~ jv!u ; v. (23)

where dt [ max
k

utku. If only the effect of time-

delay uncertainty is considered, with d 5 u 5
ws 5 0, the necessary and sufficient condition of
robust stability becomes:

E
0

T

i zti2 dt # E
0

T

iwti2 dt

; wt [ L2@0, T# ; T [ @0, `!

(24)

By eliminating the constraints of wt 5 0 and
ws 5 0 in Eqs. (21) and (24), respectively, a
sufficient condition of robust stability is ob-
tained as:

E
0

T

$izs~t!i2 1 i zt~t!i2% dt

# E
0

T

$iws~t!i2 1 iwt~t!i2% dt

; Fws
wt
G [ L2@0, T# ; T [ @0, `! (25)

Remark 1: The constraints of zero plant distur-
bances (i.e., d 5 0) and zero sensor noise (i.e.,
u 5 0) that are imposed in Eqs. (21) and (24)
are still retained in Eq. (25).
Remark 2: By setting wt 5 0, Eq. (25) implies
Eq. (21). Similarly, by setting ws 5 0, Eq. (25)
implies Eq. (24). Therefore, if Eq. (25) is satis-
fied, then the robust controller stabilizes the
closed-loop systems for all perturbed plants
within the uncertainty bounds of the modeled
plant dynamics dp and time delay of secondary
fuel combustion dt. This condition of robust

stability is not guaranteed to be satisfied by a
simple combination of Eqs. (21) and (24).

The performance requirements signify a com-
bination of reduction of acoustic energy, regula-
tion of the control-fuel injection in the low fre-
quency range, and rejection of plant disturbance
and sensor noise. The ability to suppress longitu-
dinal flow oscillations can be quantified by a
positive quadratic energy-like function as follows:

H 5
1
V E E E

V

Sp9~r, t!
p# D2

dV (26)

The controlled combustion chamber becomes
free of acoustic oscillations as H approaches
zero. Since the acoustic mode shapes are chosen
to be orthonormal, Eq. (26) is simplified as:

H 5
1
V K O wnhn, O wmhmL 5 O hn

2 5 ihi2

(27)

For each acoustic mode, the performance
weight can be incorporated to specify the indi-
vidual response. In this way, the performance
variable zp is defined by penalizing h using a
frequency-dependent weight Wp(s) as:

ẑp~s! 5 Wp~s!ĥ~s! (28)

and

Wp~s! 5 3
Wp1~s! 0 · · · 0

0 Wp2~s! · · ·
···

···
· · ·

· · · 0

0 · · · 0 WpN~s!
4
(29)

where the Laplace transform of a time-depen-
dent quantity is denoted by “ˆ”.

The acoustic pressure field is sometimes de-
sired with a small steady error and a short
settling time to improve efficiency. Thus, the
procedure of selecting Wp(s) is set as:

● The Bode magnitude plot of Wpi(s) is a
low-pass filter in the bandwidth range of
interest corresponding to the natural fre-
quency vi for a small steady oscillation.

● The shape of Wpi(s) outside the bandwidth is
assigned to be flat. The overshoot of Wpi(s)
determines the amplitudes of the mode
shape. A trade-off between the transient and
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steady-state responses results in a small set-
tling time at the expense of large overshoot.

● The bandwidth range is altered by mean-flow-
dependent model uncertainties. The nominal
bandwidth corresponds to the natural fre-
quency of acoustic oscillation. The bandwidth
range for all perturbations is determined by
the range of natural frequencies within the
specified uncertainty bound.

The other performance requirements are re-
lated to the secondary-fuel injector that is used
to distribute the control energy along the longi-
tudinal direction of the combustion chamber.
As the result of the inertial effects of fuel flow,
the frequency response of the mass flow rate of
control fuel is primarily designed to have a
limited bandwidth and overshoot amplitude. A
performance weighting function Wu(s) is thus
incorporated into the generalized plant model,
and a new performance variable zu is defined as:

ẑu~s! 5 Wu~s!û~s! (30)

where û(s) and ẑu(s) are the Laplace trans-
forms of u(t) [ ṁin(t) and zu(t), respectively.
The Bode magnitude plot of Wu(s) determines
the relevant bandwidth of control actions. A
higher magnitude of Wu(s) causes a smaller
control effect that may often lead to a reduced
overshoot of the pressure response. The shape
of the Wu(s) in the Bode magnitude plot out-
side the bandwidth range is assigned to be flat.
However, the bandwidth range could be varied
with model uncertainties. For example, the
nominal bandwidth ranges from v1 to vN if N
modes are considered. To determine the possi-
ble range of bandwidth for a variety of pertur-
bations, the range of natural frequencies for the
uncertainty bound needs to be identified.

The nominal performance is specified by a
relationship between exogenous inputs, plant
disturbance d and sensor noise u, and perfor-
mance variables, zp and zu. A shaping filter Wd

is included in the generalized plant model to
penalize the dominant frequency components
of plant disturbances. The weighted plant dis-
turbance wd is used in performance specifica-
tion, instead of d itself, as:

ŵd~s! 5 Wd~s!d̂~s! (31)

where Wd(s) is a band-pass frequency-depen-
dent function within the frequency range of the
main components of d. Similar conditions are
used to penalize the sensor noise:

ŵu~s! 5 Wu~s!û~s! (32)

where ŵu is the weighted sensor noise and
Wu(s) is the shaping filter for the sensor noise u.

An H`-optimal robust controller is designed
such that the plant disturbances d and sensor
noise u have minimum effects on acoustic mo-
tions and control actions from the energy per-
spective. In the absence of plant modeling un-
certainties (i.e., ws 5 0) and time delay
uncertainties (i.e., wt 5 0), the nominal perfor-
mance is specified as:

E
0

T

$izp~t!i2 1 izu~t!i2% dt # E
0

T

$iwd~t!i2

1 iwu~t!i2% dt

; Fwd
wt
G [ L2@0, T# ; T [ @0, `! (33)

If only initial conditions are considered (i.e., the
covariance matrices of plant disturbance and
sensor noise converge to zero), the H` control-
ler converges to an H2 controller and the fol-
lowing cost functional is minimized:

J 5 E
0

` S 1
V EEE

V
Sp9~r, t!

p# D2

dV 1 i zui2D dt

(34)

By eliminating the remaining constraints of d 5
0 and u 5 0 in Eq. (25) as well as the constraints
of ws 5 0 and wt 5 0 in Eq. (33), a sufficient
condition of robust performance is obtained as:

E
0

T

izi2 dt # E
0

T

iwi2 dt

; T [ @0, `! ; w [ L2@0, T#

with z

5 3
zs

zp

zu

zt

4 ; w 5 3
ws

wd

wu

wt

4 (35)
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Remark 3: The robust performance condition in
Eq. (35) is equivalent to simultaneously satisfy-
ing the conditions of robust stability and nomi-
nal performance that are individually satisfied in
Eqs. (25) and (33), respectively. The robust
performance condition in Eq. (35) may also be
viewed as a consequence of the small gain
theorem.
Remark 4: If Eq. (35) holds, then the robust
controller (internally) stabilizes the closed loop
control system for all plant perturbations with
the desired performance, subject to the speci-
fied uncertainty bounds.

To facilitate the H` robust control design, the
generalized plant is expressed by a state-space
realization through a series of transformations.
First of all, every subsystem expressed by a
transfer function is transformed into a state
space realization in the time domain. The trans-

fer functions Wp(s), Wu(s), Wt(s), A(s), Wd(s)
and Wu(s) are expressed respectively as

H ẋh 5 Ahxh 1 Bhh
zp 5 Chxh 1 Dhh

, H ẋu 5 Auxu 1 Buu
zu 5 Cuxu 1 Duu,

H ẋt 5 Atxt 1 Btu
zt 5 Ctxt 1 Dtu, H ẋa 5 Aaxa 1 Ba~u 1 wt!

n 5 Caxa 1 Da~u 1 wt!
,

H ẋd 5 Adxd 1 Bdwd
d 5 Cdxd 1 Ddwd

, and H ẋu 5 Auxu 1 Buwu

u 5 Cuxu 1 Duwu
.

(36)

Substitution of the above expressions into the
corresponding equations and rearrangement of
the results lead to the following state-space
realization of the generalized plant, including
the nominal plant, model uncertainties and per-
formance specifications.

3
ẋp
ẋa
ẋh

ẋu
ẋt

ẋd
ẋu

4 5 3
Ap G1Ca 0 0 0 G2Cd 0
0 Aa 0 0 0 0 0

@0 Bh# 0 Ah 0 0 0 0
0 0 0 Au 0 0 0
0 0 0 0 At 0 0
0 0 0 0 0 Ad 0
0 0 0 0 0 0 Au

43
xp
xa
xh

xu
xt

xd
xu

4 1 3
I G2Dd 0 G1Da
0 0 0 Ba
0 0 0 0
0 0 0 0
0 0 0 0
0 Bd 0 0
0 0 Bu 0

43ws
wd
wu

wt

4 1 3
G1Da

Ba
0

Bu
Bt

0
0

4u

(37)

3
zs
zp
zu
zt

4 5 3
dp 0 0 0 0 0 0

@0 Dh# 0 Ch 0 0 0 0
0 0 0 Cu 0 0 0
0 0 0 0 Ct 0 0

43
xp
xa
xh

xu
xt

xd
xu

4 1 3
0
0

Du
Dt

4u (38)

y 5 @C 0 0 0 0 0 Cu# 3
xp
xa
xh

xu
xt

xd
xu

4
1 @0 0 Du 0# 3 ws

wd
wu

wt

4 (39)

The generalized plant model is an ensemble of
Eqs. (37) through (39), as delineated below.

P~s! N 5 ẋ 5 Ax 1 B1w 1 B2u
z 5 C1x 1 D12u
y 5 C2x 1 D21w

(40)

The states of the generalized plant consist of
those of the nominal plant and actuator dynam-
ics, along with their model uncertainties, and
performance requirements specified by weight-
ing functions and shaping filters. Note that the
order of the generalized plant model P(s) in Eq.
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(40) can be reduced by means of the Hankel
operator [25].

The generalized plant model P(s) suffers
from the conservative condition for perfor-
mance specifications in Eq. (35). An attempt is,
therefore, made to improve the controller per-
formance by the D-K iteration procedure [14],
in which the generalized plant model P(s) is
compensated as D21(s) P(s) D(s) with D(s)
having the following property:

D~s!D~s! 5 D~s! D~s! (41)

Note that the block matrix D(s) in Fig. 4
includes both model uncertainties and perfor-
mance requirements. The controller design can
take advantage of available software tools, such
as the linear matrix inequalities (LMI) toolbox
[26].

PARAMETRIC STUDY AND SIMULATION
RESULTS

To study the characteristics of the controller, we
consider herein as a specific example a nominal
plant model involving the first four modes of
longitudinal pressure oscillation. The natural
frequency (in radians) of the fundamental
mode, normalized with respect to pa# /L, is
taken to be unity. The linear parameters Dni

and Eni in the nominal model, Eq. (12), as well
as the spatial distribution bk and time delay tk

of the distributed combustion source, are taken
from Fung et al. [1], representing a typical
situation encountered in several practical com-
bustion chambers. An integrated research
project comprising laser-based experimental di-
agnostics and comprehensive numerical simula-
tion is currently being conducted to provide
direct insight into the combustion dynamics in a
laboratory dump combustor [27]. Included as
part of the results are the system and actuator
parameters under feedback actions, which can
be directly incorporated into the robust control-
ler design established in the present work.

Based on the discussion in Section 3, the
performance weights Wp(s) and Wu(s) associ-
ated with the chamber pressure oscillations and
the control-fuel injection, respectively, and the
shaping filters Wd(s) and Wu(s) associated with

the plant disturbance and sensor noise, respec-
tively, are chosen as:

@Wp Wu Wd Wu# ; F qI
r~10s 1 8!

s 1 5
I IG

(42)

where q and r are positive scalars, representing
the weights of acoustic motion and control
action, respectively. A more stringent require-
ment for rejecting plant disturbances (or sensor
noise) is specified by increasing q (or r). If q is
set large relative to r, the response of acoustic
motion is more emphasized than the control
action, and vice versa. The shape of the perfor-
mance weighting associated with control-fuel
injection, Wu( jv), in the frequency domain is
shown in Fig. 5, where the natural frequencies
of the first four modes fall into the bandwidth of
[0.8, 5.0], taking into account frequency uncer-
tainties. Wu acts as a derivative operator for
regulating the transient response of control-fuel
injection within the specified bandwidth. Its
shape is assigned to be flat outside the band-
width to accommodate the steady response. The
shaping filters Wd(s) and Wu(s) are chosen as
constant identity matrices, because the process
and measurement disturbances are considered
to be white noise. The stability weighting asso-
ciated with the time delay errors of control-fuel
injection, Wt(s), is determined by Eq. (23), and
its magnitude in the frequency domain is shown
in Fig. 6. According to Eq. (23), Wt( jv) is
chosen to cover the envelope edtjv 2 1. Its
first-order approximation is used in the present
simulation study.

Fig. 5. Performance Weighting Associated with Control-
Fuel Injection.
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A series of simulation experiments have been
conducted to investigate the effect of the vari-
ous weights associated with pressure oscillation
(q) and control-fuel injection (r) on the robust-
ness and performance of the control system.
Also included in the parametric investigation
are the bound dp of plant model uncertainties
and the maximum time delay dt of the distrib-
uted combustion of control-fuel. Figure 7 exhib-
its the relationship among the parameters dp, q
and r. The uncertainty bound of combustion
time delay dt is set to be 0.3. The ratio of q to r
specifies the trade-off between the response of
acoustic motions and the bandwidth capability
of the fuel injector, and the ratio of dp to q or r
the trade-off between the robustness and per-
formance of the closed-loop system. The values
of q and r jointly determine the ability to reject

exogenous inputs (i.e., plant disturbance and
sensor noise), and increasing r implies that the
transient response of the closed-loop system is
more emphasized. For a given uncertainty
bound, the desired performance can be deter-
mined based on the plot in Fig. 7. On the other
hand, for a specified performance of the control
system, the corresponding plant modeling un-
certainty bound may not fully guarantee stabil-
ity, because Eq. (35) represents a sufficient, not
necessary, condition for robust performance.
The maximum value of the model uncertainty
bound is found to be 0.11.

The time responses of pressure oscillation
and control-fuel injection rate are studied for
two cases: one for the nominal system and the
other for a perturbed system with 50% param-
eter errors relative to their nominal values. The
simulation parameters are given in Table II.
Figure 8 shows the time history of pressure
oscillation at the chamber head end for each
mode in the nominal case that is set as a
benchmark for evaluating the efficacy of the
robust controller under induced disturbances.
The controller is activated to suppress unsteady

Fig. 6. Stability Weighting Associated with Time Delay
Errors

Fig. 7. Relationship between Plant Uncertainty and Perfor-
mance; dt 5 0.3.

TABLE 2

Simulation Parameters for Nominal Case

Time-delay error dt 5 0.3
Weighting factors q 5 0.1; r 5 0.1
Intensity of white plant disturbance 1023

Intensity of white sensor noise 1023

Fig. 8. Time History of Pressure Oscillation in Nominal
Case.
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motions when the amplitude of the sensor out-
put reaches a preset threshold value. The
closed-loop system is asymptotically stable with-
out any exogenous input, and the controller
eliminates undesired pressure oscillations
within a short period. With plant disturbances
and sensor noise, the robust feedback controller
reduces the oscillation of the first two modes to
an acceptable level in a short setting time,
without increasing the amplitude of the last two
modes. The system response is significantly im-
proved by the feedback control. Figure 9 shows
the close-up view in the period after the con-
troller is activated. The pressure oscillation is
reduced to about 1% of the mean pressure.

Figure 10 shows the time response of the

perturbed system with 50% parametric uncer-
tainties. In comparison with the nominal case
shown in Fig. 8, the control system guarantees
robust performance for a wide variety of per-
turbed plants within specified uncertainties. The
similarity between the responses in the nominal
and perturbed cases reveals the robust charac-
teristics of the H` controller. One of the major
issues in the design of an active combustion
controller is the energy required to suppress
unsteady motions as opposed to the mechanical
energy of the oscillatory flow. To explore this
point, the energy of acoustic motion and the
injected rate of control fuel are also calculated,
giving the result shown in Fig. 11, where the
injection rate of control-fuel ṁin has been
scaled by 2R# DHc/v1

2C# v p# 0 to make it nondi-
mensional.

The impact of the time-delay uncertainty dt
on the closed-loop system response is presented
in Fig. 12, showing the pressure oscillations at
the chamber head end for dt 5 0.6 , 1.2, 1.6 and
2.2. The other parameters remain identical to
those of the nominal case. If the actuator model
is made perfect (i.e. dt 5 0), the combustion
control system becomes robustly stable for the
plant uncertainty bound dp 5 0.16. The distrib-
uted actuator for secondary fuel injection must
be designed not to exceed a specified limit of
the time delay bound. Obviously, the distur-
bance rejection capability of the controller di-
minishes with an increase in dt, and the closed-
loop system becomes unstable as dt is made

Fig. 9. Time History of Pressure Oscillation in Nominal
Case under Feedback Control.

Fig. 10. Time History of Pressure Oscillation in Perturbed
System with 50% Parametric Uncertainty.

Fig. 11. Time History of Acoustic Energy and Control Fuel
Injection Rate in Perturbed System with 50% Parametric
Uncertainty.
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large enough. The present design exhibits nom-
inal stability of the control system for a maxi-
mum value of dt around 2.

Actuator saturation is one of the critical
issues in robust controller design, especially for
the H`-based controller design. Figure 13 shows
the pressure oscillation at the chamber head
end for the nominal case when the secondary-
fuel actuator could be saturated. The upper and

lower limits of saturation are set as 0.03 and 0.0,
respectively. The closed-loop system under ac-
tuator saturation still exhibits high perfor-
mance, due to the proper choice of the control
weight Wu(s).

SUMMARY AND CONCLUSIONS

A comprehensive framework has been estab-
lished for robust feedback control of longitudi-
nal combustion dynamics in propulsion systems.
The control action is executed by injecting
auxiliary liquid fuel, and is modeled as a distri-
bution of time-delayed combustion sources. The
controller design methodology is based on the
H`-based structured singular value (m) algo-
rithm for disturbance rejection, and takes into
consideration the effects of unmodeled dynam-
ics, parametric errors, and sensor noise. A phys-
ically intuitive approach is presented for selec-
tion of frequency-dependent weights for
controller synthesis and analysis where very few,
if any, iterations are needed to arrive at the final
design. The global behavior of the weighting
functions is represented by a time-domain de-
scription of performance specifications. The re-
sults of the parametric study provide flexibility
for selection of stability and performance mar-
gins in the controller design. Simulation exper-
iments show that the controller is not only
capable of suppressing pressure oscillations in a
typical combustion chamber within a short pe-
riod of time, but also retains robust stability and
performance under exogenous disturbances and
parametric uncertainties.

The work reported in this paper has been
supported in part by the Office of Naval Research
under Grant No. N00014-96-1-0405. The pro-
gram manager is Dr. Gabriel D. Roy.
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