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A local time-stepping procedure for the space-time conservation element and solution element (CESE)
method has been developed. This new procedure allows for variation of time-step size in both space and
time, and can also be extended to become multi-dimensional solvers with structured/unstructured spatial
grids. Moreover, it differs substantially inconcept and methodology from theexisting approaches. By taking
full advantage of key concepts of the CESE method, in a simple and efficient manner it can enforce flux
conservation across an interface separating grid zones of different time-step sizes. In particular, no
correction pass is needed. Numerical experiments show that, for a variety of flow problems involving
moving shock and flame discontinuities, accurate and robust numerical simulations can be achieved even
with a reduction in time-step size on the order of 10 or higher for grids across a single interface.
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Nomenclature

a convection velocity

Af pre-exponential factor

CE conservation element

E2 two-dimensional Euclidean space
~h space-time flux

IðPQ; V) integrated flux leaving volume V through

face PQ and evaluated using ~qðPÞ

IðPQ;G;VÞ integrated flux leaving volume V through

face PQ and evaluated using ~qðGÞ

M number of grid points in a grid zone

MW molecular weight

~n unit outward normal of a surface element

on S(V)

p pressure

~q column matrix formed by u and ux
q total heat release

r sub-grid index

R grid refinement ratio

SE solution element

S(V) boundary of an arbitrary space-time region V

t time

T temperature

Tf activation temperature

u marching variable

ux spatial derivative of marching variable

ut time derivative of marching variable

x space coordinate

YR mass fraction of reactant

Subscripts

CJ Chapman-Jouguet state in a self-sustained

detonation

h head end of detonation tube

j spatial index

s von Neumann spike in a detonation

Superscripts

* numerical analogue of variables without

superscript “*”

ˆ normalized variable

a the a scheme

c variable with central difference nature

w weighted averaged variable

n time-step index

Greek symbols

a exponential factor in weighting function

r density

V1 set of the grid points ( j, n) with ( j þ n) being

odd integers

V2 set of the grid points ( j, n) with ( j þ n) being

even integers

_vR mass production rate of reactant per unit

volume
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1. Introduction

In a numerical treatment of a large spatial flow domain in

which steep gradients are embedded, accurate resolution

of these regions may exclude the use of a uniform coarse

spatial grid. On the other hand, applying a very fine

uniform spatial grid over the entire domain often is not

practical because of the daunting computational cost

required. Thus, the use of nonuniform spatial grids in

which local grid size varies with local solution gradient

may become necessary. For a solver whose stability

demands that the maximum local time-step size allowed

decreases with the local spatial grid size, this implies that

the maximum advantage on accuracy and cost can be

realized by using a nonuniform spatial grid along with a

local time stepping (LTS) solver. In addition to

minimizing computer cost, LTS can reduce the Courant-

Friedrichs-Lewy (CFL) number disparity which often

gives rise to excessive local numerical dissipation. In the

present work, we will develop, in the setting of the space-

time conservation element and solution element (CESE)

method (Chang 1995, Chang et al. 1998, 1999, Wang and

Chang 1999a,b, Chang et al. 2000, Zhang et al. 2002, Wu

et al. 2003, 2004), a simple and robust LTS procedure that

in principle can be applied along with any given

nonuniform spatial grid.

Unlike the current work, LTS is an integral part of many

adaptive space-time grid refinement methods which are

generally applicable only to structured rectangular grids

(Berger and Oliger 1984, Berger 1987, Berger and colella

1989, Bell et al. 1994, Berger and LeVeque 1998). As an

example, in the work of Berger and Oliger (1984),

refinement is performed in both space and time so that a

constant ratio of the time-step size to the spatial grid size is

maintained over different grid zones. Obviously, for a finite-

difference solver in which the spatial and temporal

truncation errors are of the same order, this procedure is

more effective in enhancing accuracy than conventional

methods solely based on spatial grid refinement procedures.

Moreover, for a solver whose stability depends on the CFL

number and, therefore, on the ratio of the time-step size to the

spatial grid size, the use of the above space-time grid

refinement procedure tends not to have a negative impact on

the stability requirement of the original scheme.

For a LTS procedure to be effective, the numerical
solution it generates should not be seriously contami-
nated by spurious reflections originating from any
interface separating two space-time grid zones with
different local time-step sizes. As such, space-time flux
conservation must be enforced at each grid interface
(Berger 1987). This requirement can be easily fulfilled in
the CESE setting. The CESE method is a high-resolution
and genuinely multi-dimensional method for solving
general conservation laws (Chang et al. 1998, 1999,
Wang and Chang 1999a,b, Zhang et al. 2002). The salient
features of the CESE method include: (i) a unified
treatment of flow evolution in space and time; (ii)
enforcement of local and global space-time flux
conservation in a coherent and efficient manner; and

(iii) efficient evaluation of the fluxes at the interface of

any pair of conservation elements (CEs) by means of

staggered space-time grids without using Riemann

solvers or other flux models. As will be shown, by

taking advantage of those features, the current LTS

procedure differs substantially in both concept and

methodology from that established by Berger and Colella

(1989), Bell et al. (1994), and Berger and LeVeque

(1998). The treatment of the grid-to-grid communication

is greatly simplified, and in particular, no correction pass

is needed. Furthermore, for a wide variety of flow

problems involving steep gradients, a reduction in time-

step size on the order of 10 or higher can be successfully

carried out across a single grid interface.

The rest of the paper is organized as follows: The

fundamentals of the CESE method are provided in section

2. The 1D version of the basic LTS procedure is described

and justified in section 3. It is then explained how to

extend this procedure to become multi-dimensional

solvers with stuctured/unstructured grids. To complement

the basic LTS procedure so that it is applicable even if

accuracy consideration requires that the time-step-size

distribution be time dependent, a set of spatial grid value

reconstruction procedures is introduced in section 4. The

2D and 3D extensions of these procedures are also

described. Numerical results and conclusions are pre-

sented in sections 5 and 6, respectively.

2. Fundamentals

To facilitate the development of the LTS technique within

the framework of the CESE method, the fundamentals of

this method are briefly reviewed in this section. Several

important concepts underlying the construction of the LTS

procedure are then introduced.

2.1 The a scheme

As an example, consider the scalar wave equation

›u

›t
þ a

›u

›x
¼ 0 ð2:1Þ

where a is a constant .0. Let x1 ¼ x and x2 ¼ t be the

coordinates of a 2D Euclidean space E2. Then, using

Gauss’ divergence theorem in the space-time E2, one

concludes that equation (2.1) is the differential form of the

integral conservation lawþ
SðVÞ

~h · d ~s ¼ 0 ð2:2Þ

Here SðVÞ is the boundary of an arbitrary space-time

region V in E2, ~h ¼ ðau; uÞ; and d ~s ¼ ds~n; with ds and ~n;
respectively, being the area and the unit outward normal

vector of a surface element on S(V). Note that: (i) because
~h·d ~s is the space-time flux of ~h leaving the region V

through the surface element d ~s; equation (2.2) simply
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states that the space-time flux of ~h is conserved over V, i.e.

the total space-time flux of ~h leaving V through SðVÞ

vanishes; (ii) in E2, ds is the length of a line segment on

the simple closed curve SðVÞ; and (iii) all mathematical

operations can be carried out as though E2 were an

ordinary two-dimensional Euclidean space.

Let V1 denote the set of all space-time staggered

grid points ð j; nÞ (dots in figure 1(a)) with ð jþ nÞ being

odd integers. Each ð j; nÞ [ V1 is associated with a

solution element (SE), i.e. ð j; nÞ: By definition, SEð j; nÞ
is the interior of the region bounded by a dashed curve

depicted in figure 1(b). It includes a horizontal line

segment, a vertical line segment, and their immediate

neighborhood. Let E2 be divided into nonoverlapping

rectangular regions (see figure 1(a)) referred to as CEs.

As depicted in figure 1(c) and (d), two such regions,

i.e. CE2ð j; nÞ and CEþð j; nÞ; are associated with each

interior grid point ð j; nÞ [ V1: These CEs are referred

to as basic conservation elements (BCEs). In contrast,

CEð j; nÞ (see figure 1(e)), which is the union of

CE2ð j; nÞ and CEþð j; nÞ; is referred to as a

compounded conservation element (CCE). Note that,

among the line segments forming the boundary of

CE2ð j; nÞ; AB and AD belong to SEð j; nÞ; while CB

and CD belong to SEð j2 1; n2 1Þ: Similarly, the

boundary of CEþð j; nÞ belongs to either SEð j; nÞ or

SEð jþ 1; n2 1Þ: Hereafter, the line segment joining

points A and B will be denoted by AB if it belongs to

the SE centered at point A. The same line segment,

however, will be denoted by BA if it belongs to the SE

centered at point B.

At this juncture, a reader who is familar with the

CESE method is warned that, in the current paper, the

indices j and n are only allowed to be whole integers

instead of both half and whole integers allowed in the

past CESE practice. Moreover, the spatial grid size and

time-step size denoted here by Dx and Dt; respectively,
were represented by Dx=2 and Dt=2 in the past practice,

respectively. As will be seen, these and other changes

in conventions and notations are introduced to

avoid unnecessary complications in the current

development.

For any ð j; nÞ [ V1 and any ðx; tÞ [ SEð j; nÞ; uðx; tÞ
and ~hðx; tÞ; respectively, are approximated by

u*ðx; t; j; nÞ ; unj þ ðuxÞ
n
j ðx2 xjÞ þ ðutÞ

n
j ðt2 t nÞ ð2:3Þ

Figure 1. The solution elements (SEs) and conservation elements (CEs).
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and

~h*ðx; t; j; nÞ ; ðau*ðx; t; j; nÞ; u*ðx; t; j; nÞÞ ð2:4Þ

Here (i) unj ; ðuxÞ
n
j ; and ðutÞ

n
j are constants in SEð j; nÞ; and

(ii) ðxj; t
nÞ are the coordinates of the grid point ð j; nÞ: The

CESE method requires that u ¼ u*ðx; t; j; nÞ satisfy

equation (2.1) within SEð j; nÞ: As such, one has

ðutÞ
n
j ¼ 2aðuxÞ

n
j ð2:5Þ

Substituting equation (2.5) into equation (2.3), one has

u*ðx; t; j; nÞ ¼ unj þ ðuxÞ
n
j ½ðx2 xjÞ2 aðt2 t nÞ�;

ðx; tÞ [ SEð j; nÞ ð2:6Þ

Thus, unj and ðuxÞ
n
j are the only independent unknowns

associated with ð j; nÞ: By imposing the following two

conservation conditionsþ
SðCEþð j;nÞÞ

~h*·d ~s ¼ 0; and

þ
SðCE2ð j;nÞÞ

~h*·d ~s ¼ 0; ð j; nÞ [ V1 ð2:7Þ

at each ð j; nÞ [ V1; and using equations (2.4) and (2.6),

one has (i)

unj ¼
1

2
ð1 þ nÞun21

j21 þ ð12 nÞun21
jþ1

n
þð1 2 n2Þ ðûxÞ

n21
j21 2 ðûxÞ

n21
jþ1

h io
ð2:8Þ

and, assuming 1 2 n2 – 0; (ii)

ðûxÞ
n
j ¼ ðûaxÞ

n
j ð2:9Þ

Here, n ; aDt=Dx and for any ð j; nÞ [ V1;

ðûxÞ
n
j ;

Dx

2
ðuxÞ

n
j ð2:10Þ

and (iii)

ðûaxÞ
n
j ;

1

2
un21
jþ1 2 un21

j21 2 ð1 2 nÞ
h
�ðûxÞ

n21
j21 2 ð1 þ nÞðûxÞ

n21
jþ1

i
ð2:11Þ

Note that:

(a) Derivation of equations (2.8) and (2.9) can be

faciliated by the following observations: Because

u*ðx; t; j; nÞ is linear in x and t, it can be shown that the

total flux of ~h* leaving CE2ð j; nÞ or CEþð j; nÞ
through any of the four line segments that form its

boundary is equal to the scalar product of the vector
~h* evaluated at the midpoint of the line segment and

the “surface” vector (i.e. the unit outward normal

multiplied by the length) of the line segment.

(b) The caret symbol in the terms ðûxÞ
n
j and ðû

a
xÞ

n
j is used to

denote a normalized paramerter. Also the symbol “a”

in the term ðûaxÞ
n
j is introduced to remind readers that

equation (2.9) is valid for the a scheme (Chang 1995,

Chang et al. 2000), i.e. the fundamental CESE

marching scheme formed by equations (2.8) and (2.9).

Equations (2.8) and (2.9) are derived from equation

(2.7). The total flux ~h* leaving each of CE2ð j; nÞ and

CEþð j; nÞ vanishes for the a scheme. In addition, because

the surface integration over any interface separating two

neighboring BCEs is evaluated using the information from

a single SE, the flux leaving one of these BCEs through the

interface is the negative of that leaving another BCE

through the same interface. As a result, the local

conservation relations equation (2.7) imply that the total

flux of ~h* leaving the boundary of any space-time region

that is the union of any combination of BCEs will also

vanish, i.e. the flux of ~h* is conserved over such a union.

In particular, because CEð j; nÞ is the union of CE2ð j; nÞ
and CEþð j; nÞ; the conservation conditionþ

SðCEð j;nÞÞ

~h*·d ~s ¼ 0; ð j; nÞ [ V1 ð2:12Þ

must follow from equation (2.7). In fact, it can be shown

that equation (2.12) is equivalent to equation (2.8).

The a scheme is non-dissipative in its stability domain

jnj , 1 and is reversible in time, i.e. the same

conservation conditions equation (2.7) can be used to

construct both forward and backward time marching

schemes (Chang 1995). Because it cannot be extended

directly to model physical problems that are irreversible in

time such as an inviscid flow involving shocks, a family of

dissipative solvers of equation (2.1) were constructed as

extensions of the a scheme (Chang 1995). For these

extensions, only the less stringent conservation condition

equation (2.12) is assumed. Because equation (2.12) is

equivalent to equation (2.8), each of these dissipative

extensions is formed by equation (2.8) and a modified

version of equation (2.9). One of such extensions will be

described immediately.

2.2 The a-a scheme

Let ð j; nÞ [ V1: With the aid of equations (2.5) and (2.10)

and the definition n ¼ aDt=Dx; one has

u0
n
j^1 ; un21

j^1 þ DtðutÞ
n21
j^1 ¼ un21

j^1 2 2nðûxÞ
n21
j^1 ð2:13Þ

Because u0
n
j^1 is a first-order Taylor’s approximation of

u at ð j^ 1; nÞ;

ðûcxÞ
n
j ;

u0
n
jþ1 2 u0

n
j21

4
¼

Dx

2

u0
n
jþ1 2 u0

n
j21

2Dx

 !
ð2:14Þ

by definition, is a central-difference approximation of

›u=›x at ( j, n,), normalized by the same factor Dx=2 that
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appears in equation (2.10). The symbol “c” in ðûcxÞ
n
j is used

to denote the central-difference nature of the term ðûcxÞ
n
j :

Next we have

ðûxþÞ
n
j ;

1

2
ðu0

n

jþ1 2 unj Þ ¼
Dx

2

u0
n
jþ1 2 unj

Dx

 !
ð2:15Þ

and

ðûx2Þ
n
j ;

1

2
ðunj 2 u0

n
j21Þ ¼

Dx

2

unj 2 u0
n
j21

Dx

 !
ð2:16Þ

i.e. ðûxþÞ
n
j and ðûx2Þ

n
j are two normalized numerical

analogues of ›u=›x at ( j, n) with one being evaluated from

the right and another from the left. Moreover, by using

equations (2.14)–(2.16), one concludes that

ðûcxÞ
n
j ¼

1

2
ðûxþÞ

n
j þ ðûx2Þ

n
j

h i
ð2:17Þ

i.e. ðûcxÞ
n
j is the simple average of ðûxþÞ

n
j and ðûx2Þ

n
j : Let the

function Wo be defined by (i) Woð0; 0;aÞ ¼ 0; and (ii)

Woðx2; xþ;aÞ ¼
jxþj

a
x2 þ jx2j

a
xþ

jxþj
a
þ jx2j

a ;

ðjxþj þ jx2j . 0Þ ð2:18Þ

where xþ; x2; and a $ 0 are real variables (Note: to avoid

dividing by zero, in practice a small positive number such

as 10260 is added to the denominator in equation (2.18)).

Then the a-a scheme (Chang 1995) is formed by equation

(2.8) and

ðûxÞ
n
j ¼ ðûwx Þ

n
j ; WoððûxþÞ

n
j ; ðûx2Þ

n
j ; aÞ ð2:19Þ

Here the superscript “w” in the term ðûwx Þ
n
j is used to

denote its weighted-average nature. Generally the a-a

scheme is stable if jnj , 1 and a $ 0: Such a weighted-

average nature suppresses numerical wiggles near a

discontinuity if a $ 1 (Chang et al. 2000). It becomes

more dissipative as a increases and the Courant number jnj

decreases. The a-a scheme has been extended to become

one-dimensional and multi-dimensional Euler solvers

(Chang 1995, Chang et al. 1999, Wang and Chang

1999a,b, Zhang et al. 2002). Also there are newly

developed Courant-number insenstive extensions of the

a-a scheme (Chang 2002, Chang and Wang 2003).

This subsection is concluded with the following remarks:

(a) Because Woðx2; xþ;aÞ becomes the simple average of

x2 and xþ if a ¼ 0 or jx2j ¼ jxþj; one has

ðûwx Þ
n
j ¼ ðûcxÞ

n
j if

a ¼ 0 or ðûxþÞ
n
j

��� ��� ¼ ðûx2Þ
n
j

��� ��� ð2:20Þ

As such, the a-a scheme reduces to the scheme

formed by equation (2.8) and ðûxÞ
n
j ¼ ðûcxÞ

n
j in a smooth

solution region (where ðûxþÞ
n
j < ðûx2Þ

n
j ), even ifa – 0:

The latter scheme is a special case of the a � e scheme

(Chang 1995) with e ¼ 1=2: It is devoid of the

special numerical dissipation associated with weight-

averaging.

(b) For the a-a scheme or any other dissipative CESE

solver of equation (2.1), the flux of ~h* is conserved

only over each CCE (see equation (2.12)), but not

each BCE. Compared with the a scheme, the a-a

scheme has a weaker form of global flux conservation

relation, i.e. the flux of ~h* is conserved over any

space-time region that is the union of any combination

of CCEs.

(c) Space-time grids that contain regions of different

time-step sizes will be introduced in sections 3 and 4.

For these grids, one can still define BCEs such that

any space-time region can be covered by the union of

a combination of non-overlapping BCEs. On the

other hand, a space-time region may not be covered

by the union of a combination of well-defined and

non-overlapping CCEs. As a result, the CCE-based

conservation relations of the a-a scheme established

above must be reformulated as BCE-based conserva-

tion relations before they become compatible with

the future development. As the first step of the

reformulation, in section 2.3 the concept of

generalized flux will be introduced and used to

show that, even for the a-a scheme, the generalized

flux is conserved over each BCE and over any space-

time region that is the union of any combination of

BCEs.

2.3 Integrated, assigned and generalized fluxes

For the a-a scheme, the flux of ~h* is conserved over each

CCE such as CEð j; nÞ shown in figure 1(e). In other words,

equation (2.12) is valid if, with the aid of equations (2.4),

(2.6) and (2.10),

§1 ~h* at any point on CB and CD is evaluated using

un21
j21 and ðûxÞ

n21
j21 ;

§2 ~h* at any point on ED and EF is evaluated using

un21
jþ1 and ðûxÞ

n21
jþ1 ; and

§3 ~h* at any point on AB and AF is evaluated using unj
and ðûxÞ

n
j :

However, for the a-a scheme, the flux of ~h* is not

conserved over each BCE such as CE2ð j; nÞ and CEþð j; nÞ
(see figure 1(c) and (d)). In other words, equation (2.7) is

not valid if

§4 ~h* at any point on AD (which is a part of SEð j; nÞ) is

evaluated using unj and ðûxÞ
n
j :

Assume Rules §1–§3. Then the above discussion

implies that, for the a-a scheme, the total flux leaving the

boundary of CE2ð j; nÞ vanishes only if we ignore Rule §4

and instead assume the rule:
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§5 the flux leaving CE2ð j; nÞ through AD is assigned to

be the negative of the sum of the fluxes leaving

CE2ð j; nÞ through its other boundaries (the latter

fluxes are evaluated using Rules §1 and §3).

On the other hand (also for the a-a scheme), the total

flux leaving the boundary of CEþð j; nÞ vanishes only if we

ignore Rule §4 and instead assume the rule:

§6 the flux leaving CEþð j; nÞ through AD is assigned to

be the negative of the sum of the fluxes leaving

CEþð j; nÞ through its other boundaries (the latter

fluxes are evaluated using Rules §2 and §3).

To proceed, Rules §1–§6 are further elaborated in the

following remarks:

(a) Obviously, a flux determined using any of Rules

§1–§4 is fundamentally different from that deter-

mined using Rule §5 or Rule §6. The former is

determined through a surface integration while the

latter through a simple assignment. As such,

hereafter, the former is referred to as an integrated

flux (I-flux) while the latter an assigned flux (A-flux).

(b) Note that: (i) the sum of the I-fluxes leaving CE( j, n)

through its boundary is zero if they are evaluated

using Rules §1–§3; (ii) the boundary of CE( j, n) can

be divided into the line segments AB; CB; CD; AF;
EF; and ED; (iii) the boundary of CE2ð j; nÞ is formed

by AD and the first three line segments referred to in

item (ii); and (iv) the boundary of CEþð j; nÞ is formed

by AD and the last three line segments referred to in

item (ii). Thus one concludes that the A-flux leaving

CE2ð j; nÞ through AD and that leaving CEþð j; nÞ
through AD; as determined by Rules §5 and §6,

respectively, are the negative of each other. In other

words, these two fluxes represent the two values

of the same A-flux measured in two opposite

directions.

(c) Hereafter (see figure 1(c) and (d)), AB; CD; CB; and
AD are referred to as the top face, the bottom face, the

exterior side face and the interior side face of

CE2ð j; nÞ; respectively. Also, AF; ED; EF; and AD

are referred to as the top face, the bottom face, the

exterior side face, and the interior side face of

CEþð j; nÞ; respectively. Note that the exterior side

faces CB and EF are the side faces of CE( j, n) while

the interior side face AD lies in its interior. According

to the above definitions, an I-flux is defined at each of

all four faces of a BCE while an A-flux is defined only

at the interior side face of the BCE.

(d) For the a scheme, the I-flux is conserved over any

BCE, i.e. the sum of the I-fluxes leaving any BCE

through its four faces is zero. As such, Rules §5 and

§6 imply that, for the a scheme, the I-flux and the

A-flux are identical at its interior side face. However,

the last assertion obviously is false for the a-a

scheme.

Given the above preliminaries, the generalized flux

(G-flux) leaving a BCE through its interior side face is

defined to be the A-flux leaving the BCE through the same

face, while the G-flux leaving the BCE through any one of

its other three faces is defined to be the I-flux leaving the

BCE through the same face. With these definitions, one

concludes that, for the a scheme, the a-a scheme and,

in fact, any CESE solver that satisfies equation (2.12), the

total G-flux leaving the boundary of a BCE vanishes.

Moreover, because the G-flux leaving one of any two

neighboring BCEs through their interface is the negative

of that leaving another BCE through the same interface,

the local G-flux conservation relation eastablished above

leads to a global conservation relation, i.e. the G-flux is

conserved over any space-time region that is the union of

any combination of BCEs.

G-flux is only one of two basic conceptual under-

pinnings of the current LTS procedure. Another is

the concept of dual flux, a subject to be discussed in

section 2.4.

2.4 Dual scheme and dual flux

In the above scheme construction, it is assumed that ð j; nÞ [
V1 where V1 is the set of the grid points ( j, n) with ( j þ n)

being odd integers. The same construction can be repeated

assuming ð j; nÞ [ V2 whereV2 is the set of grid points ( j, n)

with ( j þ n) being even integers. The grid points in V2 are

the unmarked points of intersection of the vertical and

horizontal grid lines depicted in figure 1(a). Obviously the

two CESE schemes that are constructed over V1 and V2;
respectively, are independent of each other unless they are

coupled by some relations (e.g. boundary conditions)

unrelated to the internal scheme structure described above.

In the following, the combination of such two schemes will

be referred to as a dual scheme. As an example, the dual a-a

scheme is formed by equations (2.8) and (2.19)with ð j; nÞ [
V whereV ; V1 <V2:

As will be shown, the use of dual schemes is necessary

in the current LTS procedure. Its use plays a critical role in

simplifying the treatment of the communications across a

fine time step-coarse time step interface (i.e. an interface

separating two grid zones with different local time-step

sizes). As a preliminary, using rectangle ABCD depicted

in figure 1(c) as an example, several conceptual intricacies

unique to dual schemes are discussed in the following

remarks:

(a) Because the grid point ð j2 1; nÞ is point B depicted

in figure 1(c), obviously rectangle ABCD is

occupied by both CE2ð j; nÞ and CEþð j2 1; nÞ:
Thus a BCE is associated with two grid points, one

[ V1 while another [ V2: Hereafter, these two grid

points are referred to as the cohosts of the BCE.

Moreover, to avoid confusion, from now on a

space-time region such as ABCD will still be

referred to as a BCE while a space-time region with

a designated cohost such as CE2ð j; nÞ will be
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referred to as a BCE*. As such, two BCE*s can

occupy the same BCE.

(b) Generally two different local I-flux conservation

relations can be defined over a BCE. As an

example, for the dual a scheme, the local I-flux

conservation conditions

þ
SðCE2ð j;nÞÞ

~h*·d ~s ¼ 0; ð j; nÞ [ V1 ð2:21Þ

and

þ
SðCEþð j21;nÞÞ

~h*·d ~s ¼ 0; ð j2 1; nÞ [ V2 ð2:22Þ

are imposed over the same BCE, i.e. rectangle ABCD.

However, in equation (2.21), the I-fluxes over the four

sides of ABCD (hereafter they are referred to as the

I-fluxes associated with CE2ð j; nÞ) are evaluated

assuming (i)AB andAD belong to SE( j, n), and (ii)CB

andCD belong to SEð j2 1; n2 1Þ:On the other hand,
in equation (2.22), the I-fluxes over the four sides of

ABCD (hereafter they are referred to as the I-fluxes

associated with CEþð j2 1; nÞ) are evaluated assum-

ing (i) BA and BC belong to SEð j2 1; nÞ; and (ii) DA
and DC belong to SEð j; n2 1Þ: As a result, one

concludes that: (i) two different I-fluxes are defined at

each side of ABCD—one is associated with CE2ð j; nÞ
while another associated with CEþð j2 1; nÞ; and (ii)

equations (2.21) and (2.22) represent two totally

different conservation relations. According to the

previously established convention, the line segment

denoted by AD is considered as part of the SE centered

at point A while the same line segment denoted byDA

is considered as part of the SE centered at point D.

(c) Note that a side face of a BCE could be designated as

an interior or exterior side face, depending on how the

side face and BCE are designated. As an example,

because AD lies in the interior of CE( j, n), by

definition, AD is an interior side face of CE2ð j; nÞ:
On the other hand, because DA (which represents the

same line segment denoted by AD) lies on the exterior

of CEð j2 1; nÞ; by definition, DA is an exterior side

face of CEþð j2 1; nÞ (which shares the same space-

time region ABCD with CE2ð j; nÞ). Similarly, CB is

the exterior side face of CE2ð j; nÞ while BC is the

interior side face ofCEþð j2 1; nÞ:Thus, (i) theA-flux
leaving CE2ð j; nÞ through its interior side face AD; by
definition, is the negative of the sum of the I-fluxes

leavingCE2ð j; nÞ throughAB;CB andCD; and (ii) the

A-flux leaving CEþð j2 1; nÞ through its interior side

face BC; by definition, is the negative of the sum of the

I-fluxes leaving CEþð j2 1; nÞ through BA; DC; and
DA:

According to the above discussions, two I-fluxes,

one associated with CE2ð j; nÞ and another with

CEþð j2 1; nÞ; are defined at each face of rectangle

ABCD. In addition, an A-flux is defined at AD (the

interior side face of CE2ð j; nÞ) and also at BC (the

interior side face of CEþð j2 1; nÞ). Let the G-flux at

each face of CE2ð j; nÞ or CEþð j2 1; nÞ be defined

according to the rule given previously, then there exist

two different G-fluxes defined at each side of ABCD.

In addition, the G-flux associated with CE2ð j; nÞ
(or CEþð j; nÞ) is conserved over ABCD.

To pave the way, a BCE* associated with any ð j; nÞ [
Vlðl ¼ 1; 2Þ will be referred to as a BCE* of Vl: Also any

G-flux associated with such a BCE* will be referred to as a

G-flux of Vl: Moreover, the dual flux (D-flux) at any face

of a BCE is defined to be the simple average of the

G-fluxes of V1 and V2:
For an infinite uniform grid such as that depicted in figure

1(a), V1 and V2 are disjoint and a CESE scheme can be

applied separatively over them. Thus the two independent

local G-flux conservation relations defined over a BCE lead

to two independent global conservation relations, i.e. for

each l ¼ 1; 2; the G-flux ofVl is conserved over any space-

time region that is the union of any combination of BCE*s of

Vl: On the other hand, for a LTS procedure defined over

more complicated grids (see section 3), the grid points can

not, in general, be divided into two disjoint sets over which a

CESE scheme can be applied separately. Thus, for the

current LTS development, the use of a dual scheme is a must

and no longer there exist two independent global G-flux

conservation relations. However, as will be shown, many

concepts introduced above will survive and play a critical

role in the LTS development. In particular, local and global

D-flux conservation will be enforced in the current LTS

procedure.

3. Local time stepping

In this section, the grid structure is described, and the LTS

procedure and its justification are then discussed.

3.1 Grid structure

Consider the space-time grid depicted in figures 2 and 3, in

which a fine-grid zone B is sandwiched between two

coarse-grid zones A and C. The three grid zones are

defined by

M1Dx $ x $ 0 ðzone AÞ ð3:1Þ

M2Dx $ x $ M1Dx ðzone BÞ ð3:2Þ

and

M3Dx $ x $ M2Dx ðzone CÞ ð3:3Þ

respectively. Here (i) M1; M2; and M3 are given integers

with M1 $ 2; M2 $ M1 þ 1; and M3 $ M2 þ 2; and (ii)

Dx and Dt; respectively, are the spatial grid size and the

time-step size used in zones A and C. Their counterparts
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used in zone B are given, respectively, by

Dx0 ; Dx=Rx and Dt0 ; Dt=Rt ð3:4aÞ

To simplify the description of the LTS procedure, and

also to maintain a constant ratio of the time-step size to

the spatial grid size over different grid zones, the

refinement ratios Rx and Rt are assumed to satisfy the

condition

Rx ¼ Rt ¼ R ð3:4bÞ

with R $ 2 being an integer. It is worth noting that

through some straightforward modifications, the current

procedure is applicable even if Rx and Rt are arbitrary

positive numbers.

In zone A, a grid point (denoted by An
j and marked by a

dot in figure 3) is identified by a pair of indices j and n,

where

ð j; nÞ [ VðAÞ ;{ð j; nÞj j ¼ 0; 1; 2; . . .; Ja;

n ¼ 0;^1;^2; . . .}
ð3:5Þ

with Ja ; M1: By definition, point An
j is located at

x ¼ x An
j

� �
; jDx and t ¼ t An

j

� �
; nDt ð3:6Þ

In zone B, a grid point (denoted by B
n;r
j and marked

by a cross in figure 3) is identified by a triple of indices j,

n and r, where

ð j; n; rÞ [ VðBÞ ; {ð j; n; rÞj j ¼ 0; 1; 2; . . .; Jb;

n ¼ 0;^1;^2; . . .; r ¼ 0; 1; 2; . . .;R} ð3:7Þ

with Jb ; ðM2 2M1ÞR: By definition, point B
n;r
j is

located at

x ¼ x B
n;r
j

� �
; M1 þ

j

R

� �
Dx and

t ¼ t B
n;r
j

� �
; nþ

r

R

� �
Dt ð3:8Þ

Thus, for each j, the grid points B
n21;R
j and B

n;0
j share the

same space-time location. They are considered as the

same grid point.

In zone C, a grid point (denoted by Cn
j and marked by a

dot in figure 3) is identified by a pair of indices j and n,

where

ð j; nÞ [ VðCÞ ; {ð j; nÞj j ¼ 0; 1; 2; . . .; Jc;

n ¼ 0;^1;^2; . . .} ð3:9Þ

with Jc ; M3 2M2: By definition, point Cn
j is located at

x ¼ x Cn
j

� �
; ðM2 þ jÞDx and

t ¼ t Cn
j

� �
; nDt ð3:10Þ

Note that, for each n, points An
Ja

and B
n;0
0 have the

same space-time location. In the LTS procedure to be

described in section 3.2, two grid points with the same

space-time location but belonging to different grid zones

will be assigned with two different sets of grid variables.

Consequently, such two grid points must be treated

as two different grid points and denoted with different

symbols. For clarity, in figure 2, points An
Ja

and B
n;0
0

ðn ¼ 0; 1; 2; . . .Þ are moved slightly to the left and right

of their exact locations, respectively. This practice also

Figure 2. A computational domain containing fine and coarse grid zones (M1 ¼ 2; M2 ¼ 3; M3 ¼ 5; and R ¼ 2).

Figure 3. The grid points lying on and between the 0th and 1st time
levels ðJa ¼ Jb ¼ Jc ¼ R ¼ 2Þ:
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applies to the grid points at the interface between zones

B and C.

This concludes the discussion of grid geometry. The

following are preliminary remarks on the application of

several previously introduced concepts over the current

more complicated grid.

(a) By definition, (i) rectangles An21
j An21

jþ1 A
n
jþ1A

n
j ; ð j; nÞ [

VðAÞ and j , Ja; are the BCEs in zoneA; (ii) rectangles

B
n21;r
j B

n21;r
jþ1 B

n21;rþ1
jþ1 B

n21;rþ1
j ; ð j; n; rÞ [ VðBÞ; j , Jb

and r , R; are the BCEs in zone B; and (iii) rectangles
Cn21
j Cn21

jþ1 C
n
jþ1C

n
j ; ð j; nÞ [ VðCÞ and j , Jc; are the

BCEs in zoneC. Thus theBCEs are nonoverlappingand

they can be used to fill the entire computational domain.

(b) Consider figure 3. For an interior grid point in zone A,

say point A1
1; both CEþðA

1
1Þ and CE2ðA

1
1Þ are defined

and they occupy rectangles A0
1 A0

2 A1
2 A1

1 and A0
0 A0

1 A1
1

A1
0; respectively. On the other hand, for a boundary grid

point in zone A, say point A1
2; only CE2ðA

1
2Þ is defined

and it occupies rectangle A0
1 A

0
2 A

1
2 A

1
1 while CEþðA

1
2Þ is

undefined. Application of similar definitions to all grid

zones leads to the conclusions that: (i) two BCE*s are

assigned to each interior grid point of a grid zone while

only one is assigned to a boundary grid point; and (ii)

each BCE has two cohosts.

3.2 LTS procedure and its justification

To proceed, we begin with the following preliminaries:

(a) Three numerical analogues of u, ›u=›x and ›u=›t;
denoted by uðGÞ; uxðGÞ and utðGÞ; respectively, are
assigned to each grid point G (which may represent

any An
j ; or B

n;r
j ; or Cn

j ). In addition, let (i)

~h*ðx; t;GÞ ; ðau*ðx; t;GÞ; u*ðx; t;GÞÞ ð3:11Þ

utðGÞ ; 2a uxðGÞ ð3:12Þ

and

u*ðx; t;GÞ ¼ uðGÞ þ uxðGÞ

� ½ðx2 xðGÞÞ2 aðt2 tðGÞÞ� ð3:13Þ

be the current versions of equations (2.4)–(2.6),

respectively; and (ii)

ûx An
j

� �
;

Dx

2
ux An

j

� �
;

ûx B
n;r
j

� �
;

Dx

2R
ux B

n;r
j

� �
and

ûx Cn
j

� �
;

Dx

2
ux Cn

j

� �
ð3:14Þ

Also, hereafter let the 2 £ 1 column matrix with

its first and second elements being uðGÞ and ûxðGÞ;
respectively, be denoted by ~qðGÞ:

(b) Let (i) A
n21;r
Ja21 (see figures 2 and 4) denote the point

with

x ¼ ðJa 2 1ÞDx and t ¼ n2 1þ
r

R

� �
Dt ð3:15Þ

(ii) C
n21;r
1 (see figures 2 and 5) denote the point

with

x ¼ ðM2 þ 1ÞDx and t ¼ n2 1þ
r

R

� �
Dt ð3:16Þ

(iii) u0ðA
n21;r
Ja21 Þ denote the first-order Taylor’s

approximation of u at point ðA
n21;r
Ja21 Þ; evaluated in

terms of ~qðAn21
Ja21Þ; and (iv) u0ðC

n21;r
1 Þ denote the first-

order Taylor’s approximation of u at point C
n21;r
1 ;

evaluated in terms of ~qðCn21
1 Þ: Then we have

u0 A
n21;r
Ja21

� �
; u An21

Ja21

� �
þ

rDt

R
ut An21

Ja21

� �

¼ u An21
Ja21

� �
2

2rn

R
ûx An21

Ja21

� �
ð3:17Þ

Figure 4. The grid points neighboring to the interface separating zones A and B (R ¼ 3 and r ¼ 2).
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and

u0 C
n21;r
1

� �
; u Cn21

1

� �
þ

rDt

R
ut C

n21
1

� �

¼ u Cn21
1

� �
2

2rn

R
ûx Cn21

1

� �
ð3:18Þ

The validity of the last equality sign in either

equation (3.17) or (3.18) follows from equations

(3.12) and (3.14), and n ; aDt=Dx:
(c) Let (i) u0ðB

n;0
1 Þ be the first-orderTaylor’s approximation

of u at pointB
n;0
1 ; evaluated in terms of ~qðB

n21;R21
1 Þ (see

figure 4); and (ii) u0ðB
n;0
Jb21Þ be the first-order Taylor’s

approximation of u at point ðB
n;0
Jb21Þ; evaluated in terms

of ~qðB
n21;R21
Jb21 Þ (see figure 5). Then we have

u0 B
n;0
1

� �
; u B

n21;R21
1

� �
þ

Dt

R
ut B

n21;R21
1

� �

¼ u B
n21;R21
1

� �
2 2nûx B

n21;R21
1

� �
ð3:19Þ

and

u0 B
n;0
Jb21

� �
;u B

n21;R21
Jb21

� �
þ
Dt

R
ut B

n21;R21
Jb21

� �

¼u B
n21;R21
Jb21

� �
22nûx B

n21;R21
Jb21

� �
ð3:20Þ

(d) LetPQ be a face of a BCE* denoted byV (see figure 6).

LetG be a grid point that may or may not coincide with

point P or point Q. Then

IðPQ;G;VÞ;
ð
PQ

~h*ðx;t;GÞ·d~s ð3:21Þ

Here d~s¼ds~n with (i) ds being the length of a differential

element ofPQ; and (ii) ~n being the unit vector normal toPQ

and pointing outward from V. Note that: (i) with the aid of

equations (3.11), (3.13) and (3.21), IðPQ;G;VÞ represents

the I-flux leaving V throughPQ and is evaluated using ~qðGÞ;

and (ii) for simplicity, hereafter we adopt the abbreviation:

IðPQ;VÞ; IðPQ;P;VÞ ð3:22Þ

Based on the above preliminaries, we now provide a step-

by-step description of the current LTS that occurs between

t ¼ ðn2 1ÞDt and t ¼ nDt: It is then followed by an

explanation of why the LTS procedure is so constructed. We

consider only the casen ¼ 1:The general case, however, can

be constructed by simply replacing the coarse time level

indices “0” and “1” with “n2 1” and “n”, respectively.

§1. Because a . 0; equation (2.1) models a convective

process in which information propagates from left to right.

As a result, we can assume that the initial data at t ¼ 0 and

the boundary data at x ¼ 0 are given. Thus ~q ðA1
0Þ can be

specified using the given left boundary data. On the other

hand, ~qðC1
Jc
Þ can be evaluated using the boundary

condition

~qðC1
Jc
Þ ¼ n~qðC0

Jc21Þ þ ð12 nÞ~qðC0
Jc
Þ ð3:23Þ

which can be derived from the method of characteritics.

Alternatively, one can assume that

~qðA1
0Þ ¼ ~qðA0

1Þ and ~qðC1
Jc
Þ ¼ ~qðC0

Jc21Þ ð3:24Þ

For the CESE method, the boundary conditions given in

equation (3.24) are non-reflecting in nature (Chang et al.

2003) if (i) u(x,0)) based on which the grid initial data are

specified) has a flat profile outside a bounded interval, i.e.

uðx; 0Þ ¼

uoðx2Þ; if 21 , x # x2

uoðxÞ; if x2 , x , xþ

uoðxþÞ; if xþ # x , þ1

8>><
>>: ð3:25Þ

Figure 5. The grid points neighboring to the interface separating zones B and C (R ¼ 3 and r ¼ 2).

Figure 6. A point G and an edge PQ of a rectangle V.
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where x2 and xþ are given constants, and uo(x) is a given

function; (ii) A0
0 and A1

0 lie on the left boundary of a

uniform space-time grid zone that has a width $ 2Dx2,

where Dx2 is the spatial grid size of this zone; (iii) C0
Jc
and

C1
Jc
lie on the right boundary of a uniform space-time grid

zone that has a width $ 2Dxþ, where Dxþ is the spatial

grid size of this zone; and (iv)

xðA0
0Þ þ 2Dx2 # x2 , xþ # xðC0

Jc
Þ2 2Dxþ ð3:26Þ

§2. Using the dual a-a scheme, (i) for each j ¼

1; 2; 3; . . .; ja 2 1; ~qðA1
j Þ is determined in terms of ~qðA0

j21Þ

and ~qðA0
jþ1Þ; and (ii) for each j ¼ 1; 2; 3; . . .; Jc 2 1; ~qðC1

j Þ is

determined in terms of ~qðC0
j21Þ and ~qðC0

jþ1Þ:
§3. Using the dual a-a scheme (with the understanding

thatDx and Dt are replaced byDx/R and Dt/R, respectively),

for each r ¼ 1; 2; 3; . . .;R and each j ¼ 1; 2; 3; . . .; Jb 2 1;
~qðB

0;r
j Þ is determined in terms of ~qðB

0;r21
j21 Þ and ~qðB

0;r21
jþ1 Þ:As

an example, ~qðB
0;1
1 Þis determined in terms of ~qðB

0;0
0 Þ and

~qðB
0;0
2 Þ (see figure 3).

§4. For a reason to be given later, ~qðB
0;r
0 Þ; r ¼ 1; 2; . . .;R;

are updated using (see figure 4 with n ¼ 1).

uðB
0;r
0 Þ ¼

1

2Rþ 1
u0ðA

0;r
Ja21Þ

þ
2R

2Rþ 1

�
ð1 2 nÞ u2 ð1þ nÞûx½ �ðB

0;r21
1 Þ

þ n u2
ð2r 2 1Þn

R
ûx

	 

ðA0

Ja
Þ

�
ð3:27Þ

and

ûxðB
0;r
0 Þ ¼

1

2R
uðB

0;r
0 Þ2 u0ðA

0;r
Ja21Þ

h i
ð3:28Þ

Note that:

(a) To simplify notation, hereafter we adopt a convention

that can be explained using an expression on the right

side of equation (3.27) as an example, i.e.

½u2 ð1þ nÞûx�ðB
0;r21
1 Þ

; uðB
0;r21
1 Þ2 ð1þ nÞûxðB

0;r21
1 Þ ð3:29Þ

(b) Because u0ðA
0;r
Ja21Þ is a function of ~qðA0

Ja21Þ (see

equation (3.17)), equations (3.27) and (3.28) imply

that ~qðB
0;r
0 Þ is a function of ~qðA0

Ja21Þ; ~qðA
0
Ja
Þ; and

~qðB
0;r21
1 Þ:

(c) By using equations (3.6), (3.8), (3.11), (3.13), (3.14),

(3.21), and (3.22) and also Remark (a) given

immediately following equation (2.11), one

concludes that equations (3.27) and (3.28) follow

from

uxðB
0;r
0 Þ ¼

uðB
0;r
0 Þ2 u0ðA

0;r
Ja21Þ

Dx
ð3:30Þ

and

IðB
0;r21
0 B

0;r
0 ;A0

Ja
;VÞþ IðB

0;r
0 B

0;r
1 ;VÞ

þ IðB
0;r21
1 B

0;r21
0 ;VÞþ IðB

0;r21
1 B

0;r
1 ;VÞ ¼ 0 ð3:31Þ

where V ;CEþðB
0;r
0 Þ: Equation (3.30) states that

uxðB
0;r
0 Þ is equal to the finite-difference approximation

of ›u/›x at B
0;r
0 evaluated from the left using uðB

0;r
0 Þ

and u0ðA
0;r
Ja21Þ: On the other hand, equation (3.31)

represents a flux conservation condition over

CEþðB
0;r
0 Þ involving only I-fluxes.

§5. For a reason to be given later, ~qðB
0;r
Jb
Þ r ¼ 1; 2; . . .;R;

are updated using (see figure 5 with n ¼ 1)

uðB
0;r
Jb
Þ ¼

1

2Rþ 1
u0ðC

0;r
1 Þ

þ
2R

2Rþ 1

�
ð1 þ nÞ uþ ð12 nÞûx½ �ðB

0;r21
Jb21 ÞÞ

2n u2
ð2r 2 1Þn

R
ûx

	 

ðC0

0Þ

�
ð3:32Þ

and

ûxðB
0;r
Jb
Þ ¼

1

2R
u0ðC

0;r
1 Þ2 uðB

0;r
Jb
Þ

h i
ð3:33Þ

Note that:

(a) Because u0ðC
0;r
1 Þ is a function of ~qðC0

1Þ (see equation

(3.18)), equations (3.32) and (3.33) imply that ~qðB
0;r
Jb
Þ

is a function of ~qðC0
1Þ; ~qðC

0
0Þ and ~qðB

0;r21
Jb21 Þ:

(b) It can be shown that equations (3.32) and (3.33)

follow from

uxðB
0;r
Jb
Þ ¼

u0ðC
0;r
1 Þ2 uðB

0;r
Jb
Þ

Dx
ð3:34Þ

and

IðB
0;r21
Jb

B
0;r
Jb
;C0

0;VÞþ IðB
0;r
Jb
B
0;r
Jb21;VÞ

þ IðB
0;r21
Jb21 B

0;r21
Jb

;VÞþ IðB
0;r21
Jb21 B

0;r
Jb21;VÞ¼ 0 ð3:35Þ

where V;CE2ðB
0;r
Jb
Þ: Equation (3.34) states that

uxðB
0;r
Jb
Þ is equal to the finite-difference approxi-

mation of ›u/›x at B
0;r
Jb

evaluated from the right using

u0ðC
0;r
1 Þ and uðB

0;r
Jb
Þ: On the other hand, equation

(3.35) represents a flux conservation condition over

CE2ðB
0;r
Jb
Þ involving only I-fluxes.

§6. For a reason to be given later, ~qðA1
Ja
Þ is updated

using (see figure 4 with n ¼ 1).

uðA1
Ja
Þ ¼

R

Rþ 2
u0ðB

1;0
1 Þ þ

2ð1þ nÞ

Rþ 2
uþ ð12 nÞûx½ �ðA0

Ja21Þ

2
2n

RðRþ 2Þ

XR21

r¼0

ðu2 nûxÞðB
0;r
0 Þ ð3:36Þ
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and

ûxðA
1
Ja
Þ ¼

R

2
u0ðB

1;0
1 Þ2 uðA1

Ja
Þ

h i
ð3:37Þ

Note that:

(a) Because u0ðB
1;0
1 Þ is a function of ~qðB

0;R21
1 Þ

(see equation (3.19)), equations (3.36) and (3.37)

imply that ~qA1
Ja

is a function of ~qðB
0;R21
1 Þ; ~qðA0

Ja21Þ;
and ~qðB

0;r
0 Þ; r ¼ 0; 1; 2; . . .;R2 1:

(b) It can be shown that equations (3.36) and (3.37)

follow from

uxðA
1
Ja
Þ ¼

u0ðB
1;0
1 Þ2 uðA1

Ja
Þ

Dx=R
ð3:38Þ

and

XR21

r¼0

IðB
0;r
0 ðB

0;rþ1
0 ;VÞ þ IðA1

Ja
A1
Ja21;VÞ

þ IðA0
Ja21A

0
Ja
;VÞ þ IðA0

Ja21A
1
Ja21;VÞ ¼ 0 ð3:39Þ

where V ; CE2ðA
1
Ja
Þ: Equation (3.38) states that

uxðA
1
Ja
Þ is equal to the finite-difference approximation

of ›u/›x at ðA1
Ja
Þ evaluated from the right using

u0ðB
1;0
1 Þ and uðA1

Ja
Þ:On the other hand, equation (3.39)

represents a flux conservation condition over

CE2ðA
1
Ja
Þ involving only I-fluxes.

§7. For a reason to be given later, ~qðC1
0Þ is updated using

(see figure 5 with n ¼ 1).

uðC1
0Þ ¼

R

Rþ 2
u0ðB

1;0
Jb21Þ

þ
2ð1 2 nÞ

Rþ 2
½u2 ð1þ nÞûx�ðC

0
1Þ

þ
2n

RðRþ 2Þ

XR21

r¼0

ðu2 nûxÞðB
0;r
Jb
Þ ð3:40Þ

and

ûxðC
1
0Þ ¼

R

2
uðC1

0Þ2 u0ðB
1;0
Jb21Þ

h i
ð3:41Þ

Note that:

(a) Because u0ðB
1;0
Jb21Þ is a function of ~qðB

0;R21
Jb21 Þ (see

equation (3.20)), equations (3.40) and (3.41) imply

that ~qðC1
0Þ is a function of ~qðB

0;R21
Jb21 Þ; ~qðC0

1Þ; and

~qðB
0;r
Jb
Þ; r ¼ 0; 1; 2; . . .;R2 1:

(b) It can be shown that equations (3.40) and (3.41)

follow from

uxðC
1
0Þ ¼

uðC1
0Þ2 u0ðB

1;0
Jb21Þ

Dx=R
ð3:42Þ

andXR21

r¼0

IðB
0;r
Jb
B
0;rþ1
Jb

;VÞ þ IðC1
0C

1
1;VÞ þ IðC0

1C
0
0;VÞ

þ IðC0
1C

1
1;VÞ ¼ 0 ð3:43Þ

where V ; CEþðC
1
0Þ: Equation (3.42) states that uxðC

1
0Þ is

equal to the finite-difference approximation of ›u/›x at C1
0

evaluated from the left using uðC1
0Þ and u0ðB

1;0
Jb21Þ: On the

other hand, equation (3.43) represents a flux conservation

condition over CEþðC
1
0Þ involving only I-fluxes.

This concludes the description of the LTS procedure.

In the following, using the grid structure depicted in figure 3

as an example, we will explain why the procedure is so

constructed. In particular, it will be shown that the current

construction results in a key conservation property, i.e. the

D-flux is conserved over any space-time region that is

the union of any combination of BCEs.

As a preliminary, the G-fluxes associated with the

current grid structure are defined in the following remarks:

(a) Let V ; CEþðA
1
0Þ: By definition, the G-fluxes leaving

V through A1
0A

1
1; A0

1A
0
0; and A0

1A
1
1 are IðA1

0A
1
1;VÞ;

IðA0
1A

0
0;VÞ; and IðA0

1A
1
1;VÞ; respectively. In addition,

the G-flux leaving V through ðA1
0A

0
0Þ(an A-flux) is the

negative of the sum of those leaving through other

faces. Thus the G-flux is conserved over CEþðA
1
0Þ:

(b) Let V ; CE2ðA
1
1Þ: By definition, the G-fluxes

leaving V through A1
1A

1
0;A

0
0A

0
1;and A0

0A
1
0 are

IðA1
1A

1
0;VÞ; IðA

0
0A

0
1;VÞ and IðA0

0A
1
0;VÞ; respectively.

In addition, the G-flux leaving V through ðA1
1A

0
1Þ

(an A-flux) is the negative of the sum of those leaving

through other faces. Thus the G-flux is conserved over

CE2ðA
1
1Þ.

(c) Let V ; CEþðA
1
1Þ: By definition, the G-fluxes

leaving V through A1
1A

1
2;A

0
2A

0
1;B

0;0
0 B

0;1
0 and B

0;1
0 B

1;0
0

are IðA1
1A

1
2;VÞ; IðA

0
2A

0
1;VÞ; IðB

0;0
0 B

0;1
0 ;A0

2;VÞ and

IðB
0;1
0 B

1;0
0 ;A0

2;V Þ; respectively. In addition, the G-flux

leavingV throughA1
1A

0
1 (anA-flux) is the negative of the

sumof those leaving throughother faces.Thus theG-flux

is conservedoverCEþðA
1
1Þ:Furthermore, because points

B
0;0
0 and B

1;0
0 coincide with points A0

2 and A1
2;

respectively, equations (3.21) and (3.22) imply that

IðA0
2A

1
2;VÞ ¼ IðB

0;0
0 B

0;1
0 ;A0

2;VÞ

þ IðB
0;1
0 B

1;0
0 ;A0

2;VÞ: ð3:44Þ

As such theG-flux leavingV throughA0
2A

1
2 (the union

of B
0;0
0 B

0;1
0 and B

0;1
0 B

1;0
0 Þ is IðA0

2A
1
2;VÞ:

(d) LetV ; CE2ðA
1
2Þ:Bydefinition, theG-fluxes leavingV

through A1
2A

1
1;A

0
1A

0
2; and A0

1A
1
1 are IðA1

2A
1
1;VÞ;

IðA0
1A

0
2;VÞ; and IðA0

1A
1
1;VÞ; respectively. In addition,

the G-fluxes leaving V through B
0;0
0 B

0;1
0 and B

0;1
0 B

1;0
0 are

IðB
0;0
0 B

0;1
0 ;VÞ; IðB

0;1
0 B

1;0
0 ;VÞ; respectively. Equation

(3.39) coupledwith the above definitions implies that the

G-flux is conserved over CE2ðA
1
2Þ:

(e) Let V ; CEþðB
0;1
0 Þ: By definition, the G-fluxes

leaving V through ðB
0;1
0 B

0;1
1 Þ; ðB0;0

1 B
0;0
0 Þ; ðB

0;0
1 B

0;1
1 Þ;
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and ðB
0;0
0 B

0;1
0 Þ are IðB

0;1
0 B

0;1
1 ;VÞ; IðB0;0

1 B
0;0
0 ;VÞ;

IðB
0;0
1 B

0;1
1 ;VÞ; and IðB

0;0
0 B

0;1
0 ;A0

2;VÞ; respectively.

Equation (3.31) coupled with the above definitions

implies that the G-flux is conserved over CEþðB
0;1
0 Þ:

(f) Let V ; CEþðB
1;0
0 Þ: By definition, the G-fluxes leaving

V through B
1;0
0 B

1;0
1 ; B

0;1
1 B

0;1
0 ; B

0;1
1 B

1;0
1 ; and B

0;1
0 B

1;0
0 ;

are IðB
1;0
0 B

1;0
1 ;VÞ; IðB0;1

1 B
0;1
0 ;VÞ; IðB0;1

1 B
1;0
1 ; VÞ; and

IðB
0;1
0 B

1;0
0 ;A0

2;VÞ; respectively. Because (i) for each j,

B
n21;R
j and B

n;0
j represent the same grid point, and (ii)

n ¼ 1andR ¼ 2 are assumed in figure 3, equation (3.31)

coupled with the above definitions implies that the

G-flux is conserved over CEþðB
1;0
0 Þ:

(g) Let V ; CE2ðB
0;1
1 Þ: By definition, the G-fluxes

leaving V through B
0;1
1 B

0;1
0 ; B

0;0
0 B

0;0
1 ; and B

0;0
0 B

0;1
0

are IðB
0;1
1 B

0;1
0 ;VÞ; IðB0;0

0 B
0;0
1 ;VÞ and IðB

0;0
0 B

0;1
0 ;VÞ;

respectively. In addition, the G-flux leaving CE2ðB
0;1
1 Þ

throughB
0;1
1 B

0;0
1 (anA-flux) is the negative of the sumof

those leaving through other faces. Thus the G-flux is

conserved over CE2ðB
0;1
1 Þ:

(h) Let V ; CE2ðB
1;0
1 Þ: By definition, the G-fluxes

leaving V through B
1;0
1 B

1;0
0 ; B

0;1
0 B

0;1
1 ; and B

0;1
0 B

1;0
0

are IðB
1;0
1 B

1;0
0 ;VÞ; IðB

0;1
0 B

0;1
1 ;VÞ; and IðB

0;1
0 B

1;0
0 ;VÞ;

respectively. In addition, the G-flux leaving CE2ðB
1;0
1 Þ:

through ðB
1;0
1 B

0;1
1 Þ (an A-flux) is the negative of the sum

of those leaving through other faces. Thus the G-flux is

conserved over CE2ðB
1;0
1 Þ:

(i) The G-fluxes associated with CE2ðC
1
2Þ; CEþðC

1
1Þ;

CE2ðC
1
1Þ; CEþðC

1
0Þ; CE2ðB

0;1
2 Þ; CE2ðB

1;0
2 Þ; CEþ

ðB
0;1
1 Þ; and CEþðB

1;0
1 Þ are similarly defined. Using

equations (3.35) and (3.43), one concludes that the

G-flux is conserved over each of above BCE*s.

The G-fluxes associated with the BCE*s that lie between

any pair of consecutive time levels are defined in a way

identical to that described above. As such the G-flux is

conserved over all BCE*s: Moreover, because (i) each BCE

are occupied by two BCE*s (i.e. there are two different sets

of conserving G-fluxes defined at the boundary of each

BCE), and (ii) the D-flux at any face of a BCE is defined to be

the simple average of the two G-fluxes defined there, it

follows that the D-flux is conserved over each BCE. As such,

to show that the D-flux is conserved over the union of any

combination of BCEs, one needs only to show that the D-flux

leaving one of any two neighboring BCEs through their

interface is the negative of that leaving the other BCE

through the same face.

To proceed, consider A0
1A

1
1; a vertical interface in the

interior of zone A. By definition, the G-fluxes

leaving CEþðA
1
0Þ and CE2ðA

1
2Þ through A0

1A
1
1 are

IðA0
1A

1
1; CEþðA

1
0ÞÞ and IðA0

1A
1
1; CE2ðA

1
2ÞÞ; respectively

(see items (a) and (d) above). Because the unit vector

normal to A0
1A

1
1 and pointing outward from CEþðA

1
0Þ is the

negative of that normal to A0
1A

1
1 and pointing outward from

CE2ðA
1
2Þ; equations (3.21) and (3.22) imply that

IðA0
1A

1
1; CEþðA

1
0ÞÞ þ IðA0

1A
1
1; CE2ðA

1
2ÞÞ ¼ 0 ð3:45Þ

Moreover, by definition, the G-fluxes leaving CE2ðA
1
1Þ

and CEþðA
1
1Þ through A1

1A
0
1 are the A-fluxes

AðA1
1A

0
1; CE2ðA

1
1ÞÞ ; 2½IðA1

1A
1
0; CE2ðA

1
1ÞÞ

þ IðA0
0A

0
1; CE2ðA

1
1ÞÞ

þ IðA0
0A

1
0; CE2ðA

1
1ÞÞ� ð3:46Þ

and

AðA1
1A

0
1; CEþðA

1
1ÞÞ ; 2½IðA1

1A
1
2; CEþðA

1
1ÞÞ

þ IðA0
2A

0
1; CEþðA

1
1ÞÞ

þ IðA0
2A

1
2; CEþðA

1
1ÞÞ� ð3:47Þ

respectively (see items (b) and (c) above). Because ~qðA1
1Þ

is evaluated in terms of ~qðA0
0Þ and ~qðA0

2Þ using the a-a

scheme, one has the conservation conditionþ
SðCEðA1

1ÞÞ

~h*· d~s ¼ 0 ð3:48Þ

Equation (3.48) implies that the sum of the six I-fluxes in

the brackets on the right side of equations (3.46) and (3.47)

vanishes.Thus it follows fromequations (3.46) and (3.47) that

AðA1
1A

0
1; CE2ðA

1
1ÞÞ þ AðA1

1A
0
1;CEþðA

1
1ÞÞ ¼ 0 ð3:49Þ

Because CEþðA
1
0Þ and CE2ðA

1
1Þ occupy the same

rectangle A0
0A

0
1A

1
1A

1
0 while CE2ðA

1
2Þ and CEþðA

1
1Þ occupy

the same rectangle A0
1A

0
2A

1
2A

1
1; the D-fluxes leaving the

BCEs (rectangles) A0
0A

0
1A

1
1A

1
0 and A0

1A
0
2A

1
2A

1
1 through

A1
1A

0
1; by definition, are

IðA0
1A

1
1; CEþðA

1
0ÞÞ þ AðA1

1A
0
1; CE2ðA

1
1ÞÞ

h i
=2 ð3:50Þ

and

IðA0
1A

1
1; CE2ðA

1
2ÞÞ þ AðA1

1A
0
1; CEþðA

1
1ÞÞ

h i
=2 ð3:51Þ

respectively. It follows from equations (3.45) and (3.49)

that the above two D-fluxes are the negative of each other.

By applying similar arguments, one concludes that, for

any two neighboring BCEs that are in the same grid zone

and share a vertical interface, the D-flux leaving one of

these BCEs through the interface is the negative of that

leaving the other BCE through the same face.

Next consider B
0;0
0 B

0;1
0 ; a vertical interface separating

two BCEs in zones A and B, respectively. By definition, the

G-fluxes leaving CEþðA
1
1Þ and CEþðB

0;1
0 Þ through B

0;0
0 B

0;1
0
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are IðB
0;0
0 B

0;1
0 ;A0

2; CEþðA
1
1ÞÞ and IðB

0;0
0 B

0;1
0 ;A0

2; CEþðB
0;1
0 ÞÞ;

respectively (see items (c) and (e) above). Moreover, the

G-fluxes leaving CE2ðA
1
2Þ and CE2ðB

0;1
1 Þ through B

0;0
0 B

0;1
0

are IðB
0;0
0 B

0;1
0 ; CE2ðA

1
2ÞÞ and IðB

0;0
0 B

0;1
0 ; CE2ðB

0;1
1 ÞÞ;

respectively (see items (d) and (g) above). Because the

unit vector normal to B
0;0
0 B

0;1
0 and pointing outward from

the BCE A0
1A

0
2A

1
2A

1
1 (which are occupied by both CEþðA

1
1Þ

and CE2ðA
1
2Þ) is the negative of that normal to B

0;0
0 B

0;1
0 and

pointing outward from the BCE B
0;0
0 B

0;0
1 B

0;1
1 B

0;1
0 (which are

occupied by both CEþðB
0;1
0 Þ and CE2ðB

0;1
1 Þ), equations

(3.21) and (3.22) imply that

IðB
0;0
0 B

0;1
0 ;A0

2;CEþðA
1
1ÞÞ

þ IðB
0;0
0 B

0;1
0 ;A0

2; CEþðB
0;1
0 ÞÞ ¼ 0 ð3:52Þ

and

IðB
0;0
0 B

0;1
0 ;CE2ðA

1
2ÞÞþ IðB

0;0
0 B

0;1
0 ;CE2ðB

0;1
1 ÞÞ¼0 ð3:53Þ

i.e. the two fluxes that appear in equation (3.52) or equation

(3.53) are really the two values of the same I-fluxmeasured

in two opposite directions. By using equations (3.52) and

(3.53), one concludes that the two D-fluxes leaving the

BCEs A0
1A

0
2A

1
2A

1
1 and B

0;0
0 B

0;0
1 B

0;1
1 B

0;1
0 through B

0;0
0 B

0;1
0 i.e.

IðB
0;0
0 B

0;1
0 ;A0

2;CEþðA
1
1ÞÞ

h
þIðB

0;0
0 B

0;1
0 ;CE2ðA

1
2ÞÞ
i
=2 ð3:54Þ

and

IðB
0;0
0 B

0;1
0 ;A0

2;CEþðB
0;1
0 ÞÞ

h
þIðB

0;0
0 B

0;1
0 ;CE2ðB

0;1
1 ÞÞ

i
=2 ð3:55Þ

are the negative of each other. By applying similar

arguments, one concludes that, for any two neighboring

BCEs that are in different grid zones and share a vertical

interface, the D-flux leaving one of these BCEs through the

interface is the negative of that leaving the other BCE

through the same face.

Next consider A1
1A

1
2; a horizontal interface separating

two BCEs in zone A. By definition, the G-fluxes leaving

CEþðA
1
1Þ and CE2ðA

1
2Þ through A

1
1A

1
2 are IðA

1
1A

1
2; CEþðA

1
1ÞÞ

and IðA1
2A

1
1; CE2ðA

1
2ÞÞ; respectively (see items (c) and (d)

above). Because CEþðA
1
1Þ and CE2ðA

1
2Þ occupy the same

BCE A0
1A

0
2A

1
2A

1
1; by definition, the D-flux leaving the BCE

through A1
1A

1
2 is

IðA1
1A

1
2; CEþðA

1
1ÞÞ þ IðA1

2A
1
1; CE2ðA

1
2ÞÞ

h i
=2 ð3:56Þ

Similarly, it can be shown that the D-flux leaving the

BCE A1
1A

1
2A

2
2A

2
1 (which sits right above the BCE A0

1A
0
2A

1
2A

1
1

and is occupied by both CE2ðA
2
2Þ and CEþðA

2
1Þ) is

IðA1
1A

1
2; CE2ðA

2
2ÞÞ þ IðA1

2A
1
1; CEþðA

2
1ÞÞ

h i
=2 ð3:57Þ

Because the unit vector normal to A1
1A

1
2 and pointing

outward from the BCE A0
1A

0
2A

1
2A

1
1 is the negative of that

normal to A1
1A

1
2 and pointing outward from the BCE

A1
1A

1
2A

2
2A

2
1; equations (3.21) and (3.22) imply that the two

D-fluxes given in equations (3.56) and (3.57) are the negative

of each other. By applying similar arguments, one concludes

that, for any two neighboring BCEs that are in the same grid

zone and share a horizontal interface, the D-flux leaving one

of these BCEs through the interface is the negative of that

leaving the other BCE through the same face.

It has been shown that the D-flux leaving one of any two

neighboring BCEs through their interface is the negative

of that leaving the other BCE through the same face.

This coupled with the established fact that the D-flux is

conserved over each BCE implies that the D-flux

is conserved over the union of any combination of BCEs.

Aside from preserving the above conservation property,

as will be shown immediately, the current explicit LTS

performed along an interface separating two grid zones of

different time-step sizes is also designed to maintain

scheme stability and facilitate information transfer across

the interface and yet use only the smallest stencil possible.

As an example, consider the time stepping performed

along A0
2A

1
2: According to steps §3, §4, and §6 of the LTS

procedure presented earlier, (i) ~qðB
0;1
0 Þ is evaluated in

terms of ~qðA0
1Þ; ~qðA

0
2Þ; and ~qðB

0;0
1 Þ; (ii) ~qðB

1;0
0 Þ is evaluated

in terms of ~qðA0
1Þ; ~qðA0

2Þ; and ~qðB
0;1
1 Þ; (iii) ~qðA1

2Þ is

evaluated in terms of ~qðB
0;1
1 Þ; ~qðB0;1

0 Þ; ~qðB0;0
0 Þ; and ~qðA0

1Þ;

and (iv) ~qðB
0;1
1 Þ is evaluated in terms of ~qðB

0;0
0 Þ and ~qðB

0;0
2 Þ:

Moreover, by combining the fact presented above, one

also concludes that (i) ~qðB
1;0
0 Þ is a function of ~qðA0

1Þ; ~qðA
0
2Þ;

~qðB
0;0
0 Þ, and ~qðB

0;0
2 Þ; and (ii) ~qðA1

2Þ is a function of ~qðA0
1Þ;

~qðA0
2Þ; ~qðB

0;0
0 Þ; ~qðB0;0

1 Þ; and ~qðB
0;0
2 Þ: As such, the numerical

domains of dependence for ~qðB
0;1
0 Þ; ~qðB1;0

0 Þ; and ~qðA1
2Þ at

t ¼ 0 are A0
1B

0;0
1 ; A0

1B
0;0
2 ; and A0

1B
0;0
2 , respectively. Because

each of A0
1B

0;0
1 and A0

1B
0;0
2 is the union of two finite

domains in zones A and B, respectively, by adjusting Dt

for either the advection speed a $ 0 or a # 0; one can

fulfill the stability requirement that the analytical domain

of dependence must be a subset of the numerical domain

of influence. As such, the current LTS procedure can be

extended to simulate Euler flows in which information

may propagate in all directions.

This section is concluded with the following remarks:

(a) Based on the fact that these procedures are

constructed in such a manner that the analytical

domain always falls within the numerical domain if

the CFL number ,1, and also on the results of
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numerical experiments, it is concluded that the

current LTS procedure and its Euler extensions

generally are stable if (i) the CFL number ,1 for all

space-time grid cells in all grid zones, and (ii) a $ 1:

Also, these LTS procedures generally become more

dissipative as a increases and the CFL number

decreases. To prevent excessive local numerical

dissipation, it is desirable that, by adjusting local

time-step size, the CFL number be kept above some

bound (say 0.3) for all grid cells. It is expected that

the above general criteria is applicable even in the 2D

and 3D cases to be discussed below.

(b) In a 2D CESE solver, each analytical variable u is

associated with three grid variables unjk; ðuxÞ
n
jk; and

ðuyÞ
n
jk at each “solution point” ( j, k, n) (Chang et al.

1999, Wang and Chang 1999a, Zhang et al. 2002).

The spatial grid can be generated from triangles

(Chang et al. 1999, Wang and Chang 1999a) or

quadrilaterals (Zhang et al. 2002). For a standard

solver with a triangle-based (quardrilateral-based)

spatial grid and a spatially independent time-step,

each interior solution point is associated with three

(four) BCEs. Moreover, regardless of whether the

spatial grid is generated from triangles or quadri-

laterals, each BCE is a space-time cylinder with the

top and bottom faces being quadrilaterals. As such, at

each time level, an interior solution point is

associated with three or four quadrilaterals (in fact,

the solution point associated with the common vertex

of these quadrilaterals is the centroid of the union of

the same quadrilaterals). Note that: (i) for a nonuni-

form spatial grid, a solution point generally does not

coincide with the commom vertex of the associated

quadrilaterals; and (ii) concepts similar to the I-, A-,

G-, and D-fluxes were introduced in the 2D cases

(Wang and Chang 1999a, Zhang et al. 2002) albeit

that different terms are used (in fact, the generalized

flux and the dual flux defined here were referred to as

the modified flux and the generalized flux there,

respectively).

Based on the above description, the 1D CESE

LTS procedure described above can be easily

extended to become its 2D version. Specifically, (i)

interior solution points of a grid zone of uniform

time-step size are defined using the definition given

in (Wang and Chang 1999a); (ii) for the top or

bottom face (which is a quadrilateral) of each

boundary BCE of a grid zone of uniform time-step

size, one of its vertices is associated with an

interior solution point while the one facing the first

vertex is designated as an exterior solution point of

this grid zone; (iii) solution points with the same

space-time location but belonging to grid zones of

different time-step sizes are again assigned with

independent sets of grid variables; (iv) the

unknowns at an interior solution point of a grid

zone can be evaluated using the 2D dual a–a

scheme (Chang et al. 1999); and (v) the three

unknowns at an exterior solution point are

determined using an I-flux conservation condition

(the counterpart to the 1D condition such as

equation (3.31)) and two finite-difference con-

ditions (the counterparts to the 1D condition such

as equation (3.30)) that provide the grid analogues

of ux and uy: Note that, other than it must involve

at least three different grid values of u, construc-

tion of the grid analogues of ux and uy has a high

degree of freedom. However, to maintain stability

and facilitate information transfer across the

interface without incurring excessive numerical

dissipation, the analogues should be constructed

with a minimum stencil and yet using the

information from all grid zones converging on

the interface grid point under consideration.

(c) In a 3D CESE solver, each analytical variable u is

associated with four grid variables at each solution

point (Wang and Chang 1999a, Zhang et al. 2002).

The spatial grid can be generated from tetrahedrons

(Wang and Chang 1999a) or hexahedrons

(Zhang et al. 2002). For a standard solver with

a tetrahedron-based (hexahedron-based) spatial grid

and a spatially independent time-step, each interior

solution point is associated with four (six) BCEs.

Albeit it is more complex, nevertheless a 3D version

of the current 1D LTS procedure can be built using

the guidelines similar to those provided for the

construction of a 2D LTS procedure.

(d) Because the spatial grid structures used in the LTS

procedures described above are fixed in time, these

procedures cannot be used in simulations in which

accuracy consideration requires that spatial fine-grid

zones be moved with time (how they are moved with

time is a subject beyond the present work—here it is

simply assumed that at some time level, say t ¼ t n; a

reconstructed spatial grid with a new grid point

distribution is given). This limitation, however, can be

overcome if the LTS procedures are complemented by

the spatial grid value reconstruction procedures to be

described in section 4.

4. Spatial grid value reconstruction

As a preliminary, consider any set of grid points

G0;G1;G2; . . .;GK which lie on the time level t ¼ t n and

satisfy

xðG0Þ , xðG1Þ , xðG2Þ , · · · , xðGKÞ ð4:1Þ

Here (i) t ¼ t n represents a common time level of all

space-time grid zones, and (ii) xðPÞ denotes the

x-coordinate of any point P. Let (i) k be any integer with
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0 # k , K; (ii) Pk and P0
k be two points with t ¼ t n and

xðGkÞ # xðPkÞ # xðP0
kÞ # xðGkþ1Þ; ð4:2Þ

and (iii) V n be the space-time region t , t n: Then,

according to the definitions given earlier, the D-flux

leaving V n through PkP
0
k is

DðPkP
0
k;Gk;Gkþ1;V

nÞ

;
1

2
IðPkP

0
k;Gk;V

nÞ þ IðPkP
0
k;Gkþ1;V

nÞ
h i

ð4:3Þ

Here, for any points P, Q, and G lying on the time level

t ¼ t n;

IðPQ;G;V nÞ ¼

ðmax{xðPÞ;xðQÞ}

min{xðPÞ;xðQÞ}

u*ðx; t n;GÞdx ð4:4Þ

Obviously equation (4.4) follows from equation (3.11)

and (3.21).

Moreover, for a line segment with t ¼ t n and not being

bounded by two neighboring grid points, the D-flux

leaving V n through the line segment can be defined in

terms of the component D-fluxes defined in equation (4.3).

As an example, let P and Q be two points with t ¼ t n and

xðG0Þ # xðPÞ , xðG1Þ , xðQÞ # xðG2Þ ð4:5Þ

Then, by definition, the D-flux leaving V n through PQ is

DðPQ;G0;G2;V
nÞ ; DðPG1;G0;G1;V

nÞ

þ DðG1Q;G1;G2;V
nÞ ð4:6Þ

For simplicity, hereafter we adopt the abbreviation:

DðPQ;V nÞ ; DðPQ;P;Q;V nÞ ð4:7Þ

According to equations (3.21) and (3.22), the I-flux

IðPQ;V nÞ is only a function of ~qðPÞ: On the other hand,

according to equations (4.3), (4.4), (4.6), and (4.7), the

D-flux DðPQ;V nÞ is a function of the set {~q} associated

with the grid points P and Q and all the grid points

sandwiched between P and Q.

With the above preparations, the essence of the current

spatial grid value reconstruction (SGVR) procedure will

be described using figure 7 where the given “original” and

“reconstructed” spatial grids at t ¼ t n are depicted. In each

grid, a uniform spatial fine-grid zone B is sandwiched

between two uniform spatial coarse-grid zones A and C.

Moreover we assume that

xðA0Þ ¼ xðA0
0Þ ¼ 0 ð4:8Þ

xðA1Þ ¼ xðB0Þ ¼ xðA0
1Þ ¼ Dx ð4:9Þ

xðB1Þ ¼ ð3=2ÞDx ð4:10Þ

xðB2Þ ¼ xðA0
2Þ ¼ xðB0

0Þ ¼ 2Dx ð4:11Þ

xðB3Þ ¼ xðB0
1Þ ¼ ð5=2ÞDx ð4:12Þ

xðB4Þ ¼ xðC0Þ ¼ xðB0
2Þ ¼ 3Dx ð4:13Þ

xðB0
3Þ ¼ ð7=2ÞDx ð4:14Þ

xðC1Þ ¼ xðB0
4Þ ¼ xðC0

0Þ ¼ 4Dx ð4:15Þ

xðC2Þ ¼ xðC0
1Þ ¼ 5Dx ð4:16Þ

It follows from equations (4.8)–(4.16) that, in either the

original or the reconstructed grid, two neighboring grid

points in zone A or C is separated by a distance Dx while

two neighboring grid points in zone B is separated by a

distance Dx0 ¼ Dx=2:
In the current development, the set of the grid values

{~q} of the reconstructed grid points (see figure 7b) will be

evaluated in terms of the set of the known grid values {~q}

of the original grid points (see figure 7a) in a manner that

is consistent with a D-flux conservation condition, i.e. the

D-flux leaving V n through any reconstructed grid interval

evaluated using the reconstructed {~q} is identical to that

evaluated using the known original {~q}: The above

condition by no means implies that the D-flux leaving V n

through any original grid interval evaluated using the

original {~q} is identical to that evaluated using

the reconstructed {~q}: Thus, in the current development,

the D-flux is generally not conserved over a space-time

region that is the union of a combination of BCEs unless

each interface that splits the region into two with one

being above and another below a reconstruction time level

is the union of reconstructed grid intervals.

Also, by no means, the above imposed D-flux

conservation condition provides an unique solution of

the “reconstructed” {~q} in terms of the known “original”

{~q}: In the following, we describe two of the simplest

procedures by which the “reconstructed” {~q} can be

uniquely determined.

With the aid of equations (4.4) and (3.22), the

first SGVR procedure is specified using the following

rules:

Figure 7. (a) The original grid points, and (b) the reconstructed grid
points, at the time level t ¼ t n:

S.-C. Chang et al.374



§1. No reconstruction of grid values is required for the

end grid points A0
0 and C0

1; i.e.

~qðA0
0Þ ¼ ~qðA0Þ and ~qðC0

1Þ ¼ ~qðC2Þ ð4:17Þ

As such, we have

IðA0
0A

0
1;V

nÞ ¼ IðA0A1;V
nÞ ð4:18Þ

and

IðC0
1C

0
0;V

nÞ ¼ IðC2C1;V
nÞ ð4:19Þ

§2. ~qðA0
1Þ is determined in terms of ~qðA1Þ; ~qðB0Þ; and

~qðB1Þ by assuming

IðA0
1A

0
0;V

nÞ ¼ IðA1A0;V
nÞ ð4:20Þ

and

IðA0
1A

0
2;V

nÞ ¼ IðB0B1;V
nÞ þ IðB1B2;V

nÞ ð4:21Þ

§3. ~qðA0
2Þ is determined in terms of ~qðB1Þ; ~qðB2Þ; and

~qðB0
1Þ by assuming

IðA0
2A

0
1;V

nÞ ¼ IðB2B1;V
nÞ þ IðB1B0;V

nÞ ð4:22Þ

and

uxðA
0
2Þ ¼

uðB0
1Þ2 uðA0

2Þ

Dx0
ð4:23Þ

Note that, according to §5, ~qðB0
1Þ ¼ ~qðB3Þ:

§4. ~qðB0
0Þ is determined in terms of ~qðB2Þ and ~qðA0

1Þ by

assuming

IðB0
0B

0
1;V

nÞ ¼ IðB2B3;V
nÞ ð4:24Þ

and

uxðB
0
0Þ ¼

uðB0
0Þ2 uðA0

1Þ

Dx
ð4:25Þ

§5. ~qðB0
1Þ is determined by assuming

IðB0
1B

0
0;V

nÞ ¼ IðB3B2;V
nÞ ð4:26Þ

and

IðB0
1B

0
2;V

nÞ ¼ IðB3B4;V
nÞ ð4:27Þ

In fact, equations (4.26) and (4.27) imply that ~qðB0
1Þ ¼

~qðB0
3Þ:

§6. ~qðB0
2Þ is determined in terms of ~qðB0

4Þ and ~qðC0Þ by

assuming

IðB0
2B

0
1;V

nÞ ¼ IðB4B3;V
nÞ ð4:28Þ

and

IðB0
2B

0
3;V

nÞ ¼ IðC0C1=2;V
nÞ ð4:29Þ

where C1=2 is a point with t ¼ t n and xðC1=2Þ ¼ xðB0
3Þ:

§7. ~qðB0
3Þ is determined in terms of ~qðC0Þ and ~qðC1Þ by

assuming

IðB0
3B

0
2;V

nÞ ¼ IðC0C1=2;C1;V
nÞ ð4:30Þ

and

IðB0
3B

0
4;V

nÞ ¼ IðC1=2C1;C0;V
nÞ ð4:31Þ

§8. ~qðB0
4Þ is determined in terms of ~qðC1Þ and ~qðC0

1Þ

by assuming

IðB0
4B

0
3;V

nÞ ¼ IðC1C1=2;V
nÞ ð4:32Þ

and

uxðB
0
4Þ ¼

uðC0
1Þ2 uðB0

4Þ

Dx
ð4:33Þ

§9. ~qðC0
0Þ is determined in terms of ~qðC1Þ and ~qðB0

3Þ by

assuming

IðC0
0C

0
1;V

nÞ ¼ IðC1C2;V
nÞ ð4:34Þ

and

uxðC
0
0Þ ¼

uðC0
0Þ2 uðB0

3Þ

Dx0
ð4:35Þ

With the aid of equations (4.1)–(4.16) and (3.22),

equations (4.18)–(4.22), (4.24), (4.26)–(4.32), and (4.34)

imply that the reconstructed {~q} does indeed satisfy the

D-flux conservation condition if it is specified according to

the above SGVR procedure.

With the aid of equations (4.3)–(4.7), and (3.22), the

second SGVR procedure is specified using the following

rules:

§1. ~qðA0
0Þ is detemined in terms of ~qðA0Þ and ~qðA1Þ by

assuming

uðA0
0Þ ¼ uðA0Þ ð4:36Þ

and

IðA0
0A

0
1;V

nÞ ¼ DðA0A1;V
nÞ ð4:37Þ

§2. ~qðA0
1Þ is determined in terms of ~qðA0Þ; ~qðA1Þ; ~qðB0Þ;

~qðB1Þ; and ~qðB2Þ by assuming

IðA0
1A

0
0;V

nÞ ¼ DðA0A1;V
nÞ ð4:38Þ

and

IðA0
1A

0
2;V

nÞ ¼ DðB0B2;V
nÞ ð4:39Þ

§3. ~qðA0
2Þ is detemined in terms of ~qðB0Þ; ~qðB1Þ; ~qðB2Þ;

and ~qðB0
1Þ by assuming equation (4.23) and

IðA0
2A

0
1;V

nÞ ¼ DðB0B2;V
nÞ ð4:40Þ
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Note that, in §5, ~qðB0
1Þ is determined in terms of ~qðB2Þ;

~qðB3Þ; and ~qðB4Þ:

§4. ~qðB0
0Þ is determined in terms of ~qðA0

1Þ; ~qðB2Þ and

~qðB3Þ by assuming equation (4.25) and

IðB0
0B

0
1;V

nÞ ¼ DðB2B3;V
nÞ ð4:41Þ

§5. ~qðB0
1Þ is determined in terms of ~qðB2Þ; ~qðB3Þ; and

~qðB4Þ by assuming

IðB0
1B

0
0;V

nÞ ¼ DðB2B3;V
nÞ ð4:42Þ

and

IðB0
1B

0
2;V

nÞ ¼ DðB3B4;V
nÞ ð4:43Þ

§6. ~qðB0
2Þ is determined in terms of ~qðB3Þ; ~qðB4Þ; ~qðC0Þ

and ~qðC1Þ by assuming

IðB0
2B

0
1;V

nÞ ¼ DðB3B4;V
nÞ ð4:44Þ

and

IðB0
2B

0
3;V

nÞ ¼ DðC0C1=2;C0;C1;V
nÞ ð4:45Þ

§7. ~qðB0
3Þ is determined in terms of ~qðC0Þ and ~qðC1Þ by

assuming

IðB0
3B

0
2;V

nÞ ¼ DðC0C1=2;C0;C1;V
nÞ ð4:46Þ

and

IðB0
3B

0
4;V

nÞ ¼ DðC1=2C1;C0;C1;V
nÞ ð4:47Þ

§8. ~qðB0
4Þ is determined in terms of ~qðC0Þ; ~qðC1Þ and

~qðC0
1Þ by assuming equation (4.33) and

IðB0
4B

0
3;V

nÞ ¼ DðC1=2C1;C0;C1;V
nÞ ð4:48Þ

Note that, in §10, ~qðC0
1Þ is determined in terms of ~qðC1Þ

and ~qðC2Þ:

§9. ~qðC0
0Þ is determined in terms of ~qðC1Þ; ~qðC2Þ; and

~qðB0
3Þ by assuming equation (4.35) and

IðC0
0C

0
1;V

nÞ ¼ DðC1C2;V
nÞ ð4:49Þ

§10. ~qðC0
1Þ is determined in terms of ~qðC1Þ and ~qðC2Þ

by assuming

uðC0
1Þ ¼ uðC2Þ ð4:50Þ

and

IðC0
1C

0
0;V

nÞ ¼ DðC1C2;V
nÞ ð4:51Þ

Note that:

(a) Equations (4.37)–(4.49) and (4.51) imply that the

reconstructed {~q} does indeed satisfy the D-flux

conservation condition if it is specified using the

second SGVR procedure described above.

(b) We have

IðP0Q0;V nÞ ¼ IðQ0P0;V nÞ ¼ DðPQ;V nÞ ð4:52Þ

if (i) P andQ are two neighboring original grid points,

(ii) P0 and Q0 are two neighboring reconstructed grid

points, (iii)

xðPÞ ¼ xðP0Þ , xðQ0Þ ¼ xðQÞ ð4:53Þ

and (iv) ~qðP0Þ and ~qðQ0Þ are specified using the second

SGVR procedure. On the other hand, generally

IðP0Q0;V nÞ – IðQ0P0;V nÞ ð4:54Þ

if ~qðP0Þ and ~qðQ0Þ are specified using the first SGVR

procedure. In this sense the second procedure is less

“discriminating” than the first procedure. Generally,

the numerical results obtained using the second

procedure is also slightly less accurate than those

obtained using the first procedure. However, the

second procedure is more robust and, as will be

shown, easier to be extended for multidimensional

applications.

(c) Based on numerical evidence, it appears that

incorporation of the current SGVR procedure into

the 1D basic LTS procedure described in Section 3

does not have a negative impact on the stability of the

latter procedure. It is expected that the same

conclusion is also valid in 2D and 3D cases (the 2D

and 3D SGVR procedures are the topics to be

discussed below).

Based on the background information provided in

Section 3 regarding the 2D and 3D CESE solvers,

multidimensional extensions of the above second SGVR

procedure are discussed in the following remarks:

(a) Consider a case where two triangle-based 2D spatial

grids (referred to as the “original” and “recon-

structed” grids, respectively) be given at t ¼ t n: Let

the original (reconstructed) grid be divided into

different spatial LTS grid zones which are the top

(bottom) faces of various space-time LTS grid zones.

As explained in Section 3, for either of these grids, the

spatial domain at t ¼ t n is filled by the quadrilaterals

which are the spatial projections of the BCEs.

In addition, a triple of neighboring quadrilaterals

always meets at a common vertex and fills the spatial

domain surrounding this vertex. Moreover, the

number of the independent solution points that

share the same spatial location and are associated

with the common vertex is equal to the number of

different spatial LTS grid zones converge at this

vertex. In the following, it will be explained how the

reconstructed grid values can be determined in terms

of the known original grid values without violating
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the D-flux conservation condition over the time level

t ¼ t n:
(b) Let ð j; k; nÞ denote a solution point lying in the

interior of a reconstructed spatial LTS grid zone. Then

the unknowns Un
jk; ðuxÞ

n
jk; and ðuyÞ

n
jk can be determined

in terms of the original grid values by assuming that,

over each of the three quadrilaterals associated with

ð j; k; nÞ; the I-flux evaluated using the three unknowns

is equal to the D-flux evaluated using the original grid

values (how this D-flux is evaluated will be explained

later). These conditions are essentially extensions of

the conditions such as equations (4.38) and (4.39).

Note that: (i) for a reconstructed solution point where

two or more different LTS grid zones meet, the grid

values may be determined using a combination of

finite-difference and D-flux conservation con-

ditions—essentially extensions of the conditions

such as equations (4.23) and (4.40); and (ii) as will

be shown immediately, the D-flux over a recon-

structed quadrilateral is evaluated in terms of the

original grid values using a rule that is essentially an

extension of equation (4.6).

(c) Each quadrilateral referred earlier is the common

subset of the SEs of two neighboring solution points

(Wang and Chang 1999a, Zhang et al. 2002). Let

these two solution points be referred to as the cohosts

of the quadrilateral. Then the D-flux over any subset

of an original quadrilateral is defined to be the simple

average of the I-fluxes evaluated using the grid values

of the co-hosts of the quadrilateral. Moreover, the

D-flux over a given reconstructed quadrilateral is

defined to be the sum of a set of component

D-fluxes—each component represents the D-flux

over the nonnull intersection of the reconstructed

quadrilateral and one of the original quadrilaterals,

and is evaluated in terms of the grid values of the co-

hosts of the original quadrilateral that contains the

intersection.

(d) Consider a case where quadrilateral-based original

and reconstructed 2D spatial grids are given at t ¼ t n:
Let ð j; k; nÞ denote a solution point lying in the

interior of a reconstructed spatial LTS grid zone.

Then, for ð j; k; nÞ; the number of the associated

quadrilaterals (which is four) is greater than that of

associated unknowns (which is three). Because the

three unknowns generally become over-determined if

a flux condition is imposed over each of the four

quadrilaterals, the recipe described above in item (a)

obviously cannot be used here to evaluate the three

unknowns. However, as will be shown, these

unknowns can be determined using an alternative

based on the least square method.

(e) Let (i) the values of the three unknowns be denoted by

v1; v2; and v3; respectively; (ii) the four quadrilaterals
be denoted by Qð1Þ;Qð2Þ;Qð3Þ; and Q(4), respect-

ively; (iii) the I-flux over Q( j) evaluated using v1; v2;
and v3 be denoted by f j; and (iv) the D-flux over Q( j)

evaluated using the known original grid values be

denoted by dj: Then (Zhang et al. 2002)

f j ¼
X3
k¼1

gjkvk; j ¼ 1; 2; 3; 4 ð4:55Þ

where gjk are known geometry-related coefficients.

Let vkðk ¼ 1; 2; 3Þ be such that

Sðv1; v2; v3Þ ;
X4
j¼1

ð f j 2 djÞ
2 ð4:56Þ

is at its minimum, i.e.

›S

›vi
¼ 0; i ¼ 1; 2; 3 ð4:57Þ

Then, with the aid of equation (4.55), one concludes

that X3

k¼1

hikvk ¼ bi ð4:58Þ

where

hik ;
X4
j¼1

gjigjk and bi ;
X4
j¼1

djgji;

i; k ¼ 1; 2; 3

ð4:59Þ

Thus vkðk ¼ 1; 2; 3Þ can be determined using

equation (4.58) if the square matrix formed by

hikði; k ¼ 1; 2; 3Þ is nonsingular. As a result of its

definition, the aforementioned matrix is symetric and

nonsingular if the three columns of of the 4 £ 3

matrices formed by gjkð j ¼ 1; 2; 3; 4Þ and k ¼ 1; 2; 3)
are linearly independent (Strang 1988).

(f) For a standard 3D CESE solver with a tetrahedron-

based spatial grid, (i) the number of BCEs and the

number of the unknowns associated with an interior

solution point are identical (both are four), and (ii) the

spatial projection of each BCE is a hexahedron with

five vertices. Thus, for this case, a 3D reconstruction

procedure can be built using a set of recipes similar to

those described in item (a).

(g) On the other hand, for a 3D CESE solver with a

hexahedron-based spatial grid, (i) there are six BCEs

and four unknowns associated with an interior

solution point, and (ii) the spatial projection of each

BCE is an octahedron with six vertices. Thus, for this

case, a 3D reconstruction procedure can be built using

a set of recipes similar to those given in item (b).

5. Numerical experiments

A series of numerical experiments has been conducted to

examine the capability and robustness of the LTS and SGVR

procedures described in Sections 3 and 4, respectively.

Note that: (i) in the first numerical example involving
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equation (2.1), the left boundary values are specified using

the given left boundary data while the right boundary values

are evaluated using equation (3.23); (ii) in other numerical

examples involving systems of 1D conservation laws, the

boundary values of each conservative variable are specified

using the non-reflecting boundary conditions in the form of

equation (3.24); (iii) the first SGVR procedure described in

Section 4 or its extensions for systems of 1D conservation

laws is used in each of numerical examples to be considered;

and (iv) without exception, the numerical solutions to be

presented are obtained assuming that a ¼ 1 in the a-a

scheme or its extensions.

The first example involves a numerical solution to

equation (2.1) with a ¼ 1: The exact solution is assumed

to be

u ¼
10ffiffiffiffi
p

p exp 2100ðx2 t2 0:3Þ2

 �

ð5:1Þ

It represents a Guassian pulse moving in the x direction

with the constant speed of unit. As such, (i) the initial and

left boundary values needed for numerical solution are

evaluated using equation (5.1); and (ii) the Guassian peak

is located at x ¼ t þ 0:3 at any time t, i.e. it is located at

x ¼ 0:3 when t ¼ 0:
To obtain the numerical solution, a uniform space-

time coarse grid with Dx ¼ 0:01 and Dt ¼ 0:009 (i.e. the

CFL number ¼ 0.9) is first applied to cover the whole

computational domain. A uniform fine-grid zone with

R ¼ 10 and a fixed spatial length of 0.22 is then

introduced to enhance the resolution near the peak. The

left boundary of the fine-grid zone is placed at x ¼ 0:2
when t ¼ 0: It moves in the positive x direction every

two or three coarse time intervals so that the Guassian

peak and the mean spatial location of the fine-grid zone

are kept within a spatial distance of 0.01. The exact and

numerical solutions (denoted by a solid line and dots,

respectively) along with the spatial grid distribution at

t ¼ 0:9 are depicted in figure 8. Not only the numerical

solution agrees very well with the exact solution

throughout the entire domain, the numerical data also

matches smoothly across the two interfaces separating

the fine- and coarse-grid zones.

Also noted are: (i) according to equation (5.1), at

t ¼ 0:9; u8 5:6418 at x ¼ 1:1995 and x ¼ 1:2005 (i.e. the

two fine grid locations closest to the location x ¼ 1:2
where the peak value of the Guassian pulse occurs); and

(ii) on the other hand, according to the numerical solution,

u8 5:6416 at the same two locations. The numerical error

is less than 0.004%.

In the second example, the Sod shock tube problem

(Chang 1995) is solved using the Euler version of the dual

a-a scheme along with the present LTS-SGVR procedure.

The specific-heat ratio g is 1.4 and the spatial domain is

½20:5; 0:5�: The initial conditions are: ðr; v; pÞ ¼ ð1; 0; 1Þ
if x , 0 and ðr; v; pÞ ¼ ð0:125; 0; 0:1Þ if x . 0; where r, v
and p denote the normalized density, velocity and

pressure, respectively. The underlying coarse grid with

Dx ¼ 4 £ 1023 covers the entire spatial domain, while the

fine-grid zone of a fixed spatial length covers the region

½20:05; 0:05� at t ¼ 0 and moves with the shock

thereafter. The time-step size Dt is 1:5 £ 1023 (i.e. the

CFL number < 0.82) and the grid refinement ratio R ¼ 4:
The overall flow distributions at t ¼ 0:195 are shown in

figure 9a. A close-up view covering the neighborhood of

the fine-grid zone is presented in figure 9b (the dots

represent grid solutions). The shock is well resolved.

No numerical oscillation is observed even though the fine-

grid zone moves with the shock after t ¼ 0: Extensive
calculations have also been carried out for a wide range of

the values of R. Results all indicate sharp, smooth

transient at grid interfaces, even for a high refinement ratio

of R ¼ 64:
The third example deals with detonation propagation in

a one-dimensional tube using an extended dual a-a

scheme (Wu et al. 2004). The chemical kinetics scheme

involves a one-step, irreversible, Arrhenius-type reaction

for two species (i.e. reactant and product),

ReactantðRÞ ¼ ProductðPÞ þ heat releaseðqÞ ð5:2Þ

The mass production rate of the reactant per unit

volume is

_vR ¼ 2rYRAf expð2Tf =TÞ ð5:3Þ

where Af and Tf are the pre-exponential factor and the

activation temperature, respectively. Their values

and other parameters adopted in the calculations are g ¼

1:25; MW ¼ 15 kg=kmol; q ¼ 6:79 £ 106 J=kg; Af ¼

7:5 £ 109 1=s; Tf ¼ 15000K; where MW stands for the

molecular weight.

Figure 10 shows the computational domain and initial

conditions. The tube spans a length of 20 cm with a closed

head end and an open exit. Initially, the reactant at 1 atm

and 300 K fills up the tube. A small energetic region with

p ¼ 30 atm and T ¼ 3000K is placed at the head end to

initiate detonation. Two uniform spatial grids are used in

the calculations. One is the underlying coarse grid that

covers the entire computational domain, and the other is a

fine grid that has a fixed length of 3 cm and travels with the

Figure 8. Exact and numerical solutions along with grid distribution at
t ¼ 0:9 for the case of scalar wave propagation ðR ¼ 10Þ:
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detonation wave to enhance the resolution of the wave

front. The number of the grid points of the coarse grid is

fixed to 2001 (i.e. Dx ¼ 0:01 cm) for all the simulations.

The number of the grid points of the fine grid is

determined by the refinement ratio R.

A series of simulations has been carried out with

R ¼ 1; 2; 4; and 8. Different from the previous two

examples in which the temporal intervals on the coarse

grids are fixed, the CFL numbers based on the coarse

grid size are taken to be 0.9, 0.6, 0.6 and 0.45 for these

grid refinement ratios, respectively. Table 1 summerizes

the numerical predictions of the characteristic proper-

ties of the flow with various R’s. Also included in the

table are their theoretical counterparts calculated based

on the the Zeldovich, von Neumann and Döring (ZND)

theory (Wu 2002, Wu et al. 2004). The calculated von

Neumann spike pressure, ps; approaches the theoretical

value with increasing R. The detonation wave velocity

uD; the pressure pCJ and temperature TCJ at the

Chapman–Jouguet state, and the pressure at the head

end ph are well predicted with all R’s. It is worth

mentioning that the deviation of the calculated ps from

the theoretical prediction results from the assumptions

employed in the ZND theory that an inert shock

exists in the detonation wave front, and that the

flow properties are uniformly distributed immediately

downstream of the shock. These assumptions apparently

do not reflect the actual flow evolution predicted by the

numerical calculation, in which flow continuously

expands downstream of the shock and chemical

reactions start to occur during this process. The

calculated ps based on a finite-rate chemcial kinetics

model tends to be lower than that predicted by the ZND

theory.

All the numerical schemes, including the space-time

CE/SE method, must introduce more or less artificial

dissipation to suppress numerical oscillations near steep

gradients in flowfields. For the present detonation

problem, the a-a scheme has been used with a ¼ 1 in

all the calculations. As a consequence, numerical

dissipation is introduced near the detonation wave front,

leading to a smeared wave front. Since numerical

dissipation decreases with increasing grid resolution, the

numerically predicted von Neumann pressure spike

increases with R. In comparison, the detonation wave

speed uD and the CJ state are only functions of the total

heat release with fixed gas properties, and the pressure

at the chamber head end ph depends only on pCJ:

Figure 9. Numerical solution to Sod’s shock problem at t ¼ 0:195
ðR ¼ 4Þ; (a) distributions of pressure, density, and velocity in entire
domain, (b) close-up view near the shock.

Figure 10. Initial conditions used in the case of detonation propagation.

Table 1. Comparison of numerical results for different mesh refinement
ratio R’s with theoretical counterparts for the case of detonation

propagation.

R uDm/s ps atm pCJ atm TCJK ph atm

1 2849 27.0 22.1 3743 8.06
2 2850 29.0 22.1 3743 8.06
4 2850 32.2 22.1 3743 8.06
8 2850 36.0 22.1 3743 8.06
Theoretical value 2837 42.9 22.0 3736 8.05

Figure 11. Snapshot of pressure and velocity distributions at 45ms
for the case of detonation propagation ðR ¼ 8Þ:
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These values are not affected by the von Neumann

pressure spike and, therefore, can be accurately predicted

even with a simple coarse mesh.

To further examine the performance of the LTS

procedure developed in the present work, the snapshot of

the pressure and velocity fields at t ¼ 45:4ms for the case

of R ¼ 8 is plotted in figure 11. The left coarse/fine grid

interface is located at 10.33 cm at this instant time.

No numerical oscillations exist at any place in the domain

even after the fine grid has moved over a long distance

from its initial position at the chamber head-end. The LTS

procedure developed herein is indeed capable of

providing accurate solutions across coarse/fine grid

interfaces.

6. Conclusions

A new local time-stepping procedure within the

framework of the space-time CESE method has been

established. The scheme is compatible with unstructured

spatial grids and capable of treating one- and multi-

dimenisonal problems. With the aid of spatial grid value

reconstruction, the present time stepping procedure is

applicable to situations requiring that fine grid zones be

moved with time. Moreover, by taking advantage of

several key features of the CESE method, flux

conservation across an interface separating grid zones

of different time-step sizes is enforced in a much

simpler and more efficient manner compared with

existing approaches. Thus, even without using any

correction pass, no spurious reflections originated from

such an interface are observed in the numerical

experiments presented herein. For a variety of flow

problems involving moving shock and flame disconti-

nuities, accurate and robust numerical simulations can

be carried out even with a reduction in time-step size on

the order of 10 or higher.
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