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Local time-stepping procedures for the space-time conservation
element and solution element method
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A local time-stepping procedure for the space-time conservation element and solution element (CESE)
method has been developed. This new procedure allows for variation of time-step size in both space and
time, and can also be extended to become multi-dimensional solvers with structured/unstructured spatial
grids. Moreover, it differs substantially in concept and methodology from the existing approaches. By taking
full advantage of key concepts of the CESE method, in a simple and efficient manner it can enforce flux
conservation across an interface separating grid zones of different time-step sizes. In particular, no
correction pass is needed. Numerical experiments show that, for a variety of flow problems involving
moving shock and flame discontinuities, accurate and robust numerical simulations can be achieved even
with a reduction in time-step size on the order of 10 or higher for grids across a single interface.
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Nomenclature

a convection velocity

Af pre-exponential factor

CE conservation element

E, two-dimensional Euclidean space

h space-time flux

I(PQ; V) integrated flux leaving volume V through
face PQ and evaluated using g(P)

I(PQ;G;V) integrated flux leaving volume V through
face PQ and evaluated using §(G)

M number of grid points in a grid zone

MW molecular weight

n unit outward normal of a surface element
on S(V)

P pressure

q column matrix formed by u and u,

q total heat release

r sub-grid index

R grid refinement ratio

SE solution element

S(V) boundary of an arbitrary space-time region V

t time

T temperature

T activation temperature

u marching variable

Uy spatial derivative of marching variable

u, time derivative of marching variable

by space coordinate
Yr mass fraction of reactant
Subscripts
CJ Chapman-Jouguet state in a self-sustained
detonation
head end of detonation tube
J spatial index
S von Neumann spike in a detonation
Superscripts
* numerical analogue of variables without

superscript “*”
normalized variable
the a scheme
variable with central difference nature
weighted averaged variable
time-step index

>

S = o8

Greek symbols

a exponential factor in weighting function

p density

(0N set of the grid points (j, n) with (j 4+ n) being
odd integers

0, set of the grid points (j, n) with (j + n) being
even integers

@R mass production rate of reactant per unit
volume
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1. Introduction

In a numerical treatment of a large spatial flow domain in
which steep gradients are embedded, accurate resolution
of these regions may exclude the use of a uniform coarse
spatial grid. On the other hand, applying a very fine
uniform spatial grid over the entire domain often is not
practical because of the daunting computational cost
required. Thus, the use of nonuniform spatial grids in
which local grid size varies with local solution gradient
may become necessary. For a solver whose stability
demands that the maximum local time-step size allowed
decreases with the local spatial grid size, this implies that
the maximum advantage on accuracy and cost can be
realized by using a nonuniform spatial grid along with a
local time stepping (LTS) solver. In addition to
minimizing computer cost, LTS can reduce the Courant-
Friedrichs-Lewy (CFL) number disparity which often
gives rise to excessive local numerical dissipation. In the
present work, we will develop, in the setting of the space-
time conservation element and solution element (CESE)
method (Chang 1995, Chang et al. 1998, 1999, Wang and
Chang 1999a,b, Chang et al. 2000, Zhang et al. 2002, Wu
et al. 2003, 2004), a simple and robust LTS procedure that
in principle can be applied along with any given
nonuniform spatial grid.

Unlike the current work, LTS is an integral part of many
adaptive space-time grid refinement methods which are
generally applicable only to structured rectangular grids
(Berger and Oliger 1984, Berger 1987, Berger and colella
1989, Bell et al. 1994, Berger and LeVeque 1998). As an
example, in the work of Berger and Oliger (1984),
refinement is performed in both space and time so that a
constant ratio of the time-step size to the spatial grid size is
maintained over different grid zones. Obviously, for a finite-
difference solver in which the spatial and temporal
truncation errors are of the same order, this procedure is
more effective in enhancing accuracy than conventional
methods solely based on spatial grid refinement procedures.
Moreover, for a solver whose stability depends on the CFL
number and, therefore, on the ratio of the time-step size to the
spatial grid size, the use of the above space-time grid
refinement procedure tends not to have a negative impact on
the stability requirement of the original scheme.

For a LTS procedure to be effective, the numerical
solution it generates should not be seriously contami-
nated by spurious reflections originating from any
interface separating two space-time grid zones with
different local time-step sizes. As such, space-time flux
conservation must be enforced at each grid interface
(Berger 1987). This requirement can be easily fulfilled in
the CESE setting. The CESE method is a high-resolution
and genuinely multi-dimensional method for solving
general conservation laws (Chang et al. 1998, 1999,
Wang and Chang 1999a,b, Zhang et al. 2002). The salient
features of the CESE method include: (i) a unified
treatment of flow evolution in space and time; (ii)
enforcement of local and global space-time flux
conservation in a coherent and efficient manner; and

(iii) efficient evaluation of the fluxes at the interface of
any pair of conservation elements (CEs) by means of
staggered space-time grids without using Riemann
solvers or other flux models. As will be shown, by
taking advantage of those features, the current LTS
procedure differs substantially in both concept and
methodology from that established by Berger and Colella
(1989), Bell et al. (1994), and Berger and LeVeque
(1998). The treatment of the grid-to-grid communication
is greatly simplified, and in particular, no correction pass
is needed. Furthermore, for a wide variety of flow
problems involving steep gradients, a reduction in time-
step size on the order of 10 or higher can be successfully
carried out across a single grid interface.

The rest of the paper is organized as follows: The
fundamentals of the CESE method are provided in section
2. The 1D version of the basic LTS procedure is described
and justified in section 3. It is then explained how to
extend this procedure to become multi-dimensional
solvers with stuctured/unstructured grids. To complement
the basic LTS procedure so that it is applicable even if
accuracy consideration requires that the time-step-size
distribution be time dependent, a set of spatial grid value
reconstruction procedures is introduced in section 4. The
2D and 3D extensions of these procedures are also
described. Numerical results and conclusions are pre-
sented in sections 5 and 6, respectively.

2. Fundamentals

To facilitate the development of the LTS technique within
the framework of the CESE method, the fundamentals of
this method are briefly reviewed in this section. Several
important concepts underlying the construction of the LTS
procedure are then introduced.

2.1 The a scheme

As an example, consider the scalar wave equation

du aa—u =0 (2.1)
ot ox

where a is a constant >0. Let x; = x and x, = ¢ be the
coordinates of a 2D Euclidean space E,. Then, using
Gauss’ divergence theorem in the space-time E,, one
concludes that equation (2.1) is the differential form of the
integral conservation law

ff h-d5=0
S(V)

Here S(V) is the boundary of an arbitrary space-time
region Vin E,, h= (au,u), and ds = don, with do and 7,
respectively, being the area and the unit outward normal
vector of a surface element on S(V). Note that: (i) because
h-ds is the space-time flux of h leaving the region V
through the surface element d's, equation (2.2) simply

(2.2)
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states that the space-time flux of 1 is conserved over V, ie.
the total space-time flux of h leaving V through S(V)
vanishes; (ii) in E,, do is the length of a line segment on
the simple closed curve S(V); and (iii) all mathematical
operations can be carried out as though E, were an
ordinary two-dimensional Euclidean space.

Let ), denote the set of all space-time staggered
grid points (j,n) (dots in figure 1(a)) with (j 4 n) being
odd integers. Each (j,n) € ); is associated with a
solution element (SE), i.e. (j,n). By definition, SE(j, n)
is the interior of the region bounded by a dashed curve
depicted in figure 1(b). It includes a horizontal line
segment, a vertical line segment, and their immediate
neighborhood. Let E, be divided into nonoverlapping
rectangular regions (see figure 1(a)) referred to as CEs.
As depicted in figure 1(c) and (d), two such regions,
i.e. CE_(j,n) and CE,(j,n), are associated with each
interior grid point (j,n) € ;. These CEs are referred
to as basic conservation elements (BCEs). In contrast,
CE(j,n) (see figure 1(e)), which is the union of
CE_(j,n) and CE.(j,n), is referred to as a
compounded conservation element (CCE). Note that,
among the line segments forming the boundary of
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CE_(j,n), AB and AD belong to SE(j,n), while CB
and CD belong to SE(j— 1,n—1). Similarly, the
boundary of CE.(j,n) belongs to either SE(j,n) or
SE(j+ 1,n — 1). Hereafter, the line segment joining
points A and B will be denoted by AB if it belongs to
the SE centered at point A. The same line segment,
however, will be denoted by BA if it belongs to the SE
centered at point B.

At this juncture, a reader who is familar with the
CESE method is warned that, in the current paper, the
indices j and n are only allowed to be whole integers
instead of both half and whole integers allowed in the
past CESE practice. Moreover, the spatial grid size and
time-step size denoted here by Ax and Az, respectively,
were represented by Ax/2 and Ar/2 in the past practice,
respectively. As will be seen, these and other changes
in conventions and notations are introduced to
avoid unnecessary complications in the current
development.

For any (j,n) € Q; and any (x,7) € SE(j,n), u(x,1)
and 7l(x, 1), respectively, are approximated by

w (x,137,m) = uf + () (= x) + )it — ") (2.3)

=3 =2 =1 =0 J=1 =2 =3
n=4
n=3
n=2
- n=1 t
A‘tl
n=0
I-‘—bl X
AX
(a) A staggered uniform space-time mesh.
(i,n) {J.n}
A A F
C D D E
(G-1.n-1) (G+1,n-1}
(b) SE(, n) (¢} CE_(,n) (d) CE, (i, n)
Dn)
B o
I g
C : E
(-1, n-1) b Gt1,n-1)
() CE(, n)

Figure 1.

The solution elements (SEs) and conservation elements (CEs).
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and

R (x, t5j,n) = (au”(x, 15),n), u™(x,65,m)  (2.4)

Here (i) u7, (ux)}’, and (u,)}“ are constants in SE(j, n), and
(ii) (x;,¢") are the coordinates of the grid point (j,n). The
CESE method requires that u = u*(x,t;j,n) satisfy
equation (2.1) within SE(j, n). As such, one has

()} = —atu),

(2.5)
Substituting equation (2.5) into equation (2.3), one has
W1, =l + W) — x) — ale — 1),

(x,1) € SE(j,n) (2.6)

Thus, u} and (uy); are the only independent unknowns
associated with (j,n). By imposing the following two
conservation conditions

fi; h*d3=0, and
S(CE+(j,n)
h*ds =0,

(Jj,n) € (200

%S(CE_ (J,n)

at each (j,n) € )y, and using equations (2.4) and (2.6),
one has (i)

1 _ _
uy :E{(l + V)u;?,ll 4+ - Ij)uj’.’Jrll

+(1 - [as! @]} es
and, assuming 1 — v? # 0, (ii)
()] = (@)] (2.9)
Here, v = aAr/Ax and for any (j,n) € Qy,
(i)} = %(Mx);f (2.10)
and (iii)
can [t e
(it); =5 Ui Tty T -
(@) = (1 + v, ;.:1‘} Q.11
Note that:

(a) Derivation of equations (2.8) and (2.9) can be
faciliated by the following observations: Because
u*(x,t;j,n)is linear in x and ¢, it can be shown that the
total flux of h* leaving CE_(j,n) or CEL(j,n)
through any of the four line segments that form its
boundary is equal to the scalar product of the vector
h* evaluated at the midpoint of the line segment and
the “surface” vector (i.e. the unit outward normal
multiplied by the length) of the line segment.

(b) The caret symbol in the terms (z)x);‘ and (itf;)_;? is used to
denote a normalized paramerter. Also the symbol “a”
in the term (it‘x’)j'.l is introduced to remind readers that
equation (2.9) is valid for the a scheme (Chang 1995,
Chang et al. 2000), i.e. the fundamental CESE
marching scheme formed by equations (2.8) and (2.9).

Equations (2.8) and (2.9) are derived from equation
(2.7). The total flux h leaving each of CE_(j,n) and
CE..(j, n) vanishes for the a scheme. In addition, because
the surface integration over any interface separating two
neighboring BCEs is evaluated using the information from
a single SE, the flux leaving one of these BCEs through the
interface is the negative of that leaving another BCE
through the same interface. As a result, the local
conservation relations equation (2.7) imply that the total
flux of 1 * leaving the boundary of any space-time region
that is the union of any combination of BCEs will also
vanish, i.e. the flux of 4 is conserved over such a union.
In particular, because CE(j, n) is the union of CE_(j,n)
and CE_(j,n), the conservation condition

1; h*ds =0,
S(CE(j,n))

must follow from equation (2.7). In fact, it can be shown
that equation (2.12) is equivalent to equation (2.8).

The a scheme is non-dissipative in its stability domain
|| <1 and is reversible in time, i.e. the same
conservation conditions equation (2.7) can be used to
construct both forward and backward time marching
schemes (Chang 1995). Because it cannot be extended
directly to model physical problems that are irreversible in
time such as an inviscid flow involving shocks, a family of
dissipative solvers of equation (2.1) were constructed as
extensions of the a scheme (Chang 1995). For these
extensions, only the less stringent conservation condition
equation (2.12) is assumed. Because equation (2.12) is
equivalent to equation (2.8), each of these dissipative
extensions is formed by equation (2.8) and a modified
version of equation (2.9). One of such extensions will be
described immediately.

(Jj,m) € (2.12)

2.2 The a-o scheme

Let (j,n) € ;. With the aid of equations (2.5) and (2.10)
and the definition v = aAt/Ax, one has
m

— -1 -1 -1 N
Wiey = ey + A7 = wiey — 2U)j:,

k (2.13)

Because u’;’il is a first-order Taylor’s approximation of
wat (jx1, n),

u".‘ — 1,{"417 Ax u"? — M”-l,
(O Al T L= = (jHZAx . ‘) (2.14)

by definition, is a central-difference approximation of
ou/dx at (j, n,), normalized by the same factor Ax/2 that
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appears in equation (2.10). The symbol “c” in (ﬁ;);’ is used
to denote the central-difference nature of the term (@)
Next we have

" 1 . Ax W=yt
(ux+)j = E(”lj+1 - ”Jn) =5 <M> (2.15)

2 Ax
and
R 1 n Ax [u? — u'"
(ux_)]’.Z = E(uj{l — u/j—l) = 5 (lel> (2.16)

ie. (it,ﬁL)Jf1 and (ﬁxf);’ are two normalized numerical
analogues of du/dx at (j, n) with one being evaluated from
the right and another from the left. Moreover, by using
equations (2.14)—(2.16), one concludes that

AcC\Nn 1 ~ n ~ n
(@) =5 (@) + @)y 2.17)
ie. (ﬁ;)]’.‘ is the simple average of (ﬁx+);’ and (i1,— )}’. Let the

function W, be defined by (i) W,(0,0, @) = 0, and (ii)

b e + T %xy
e 1+ -]

Wox—,x41;a) =

b

(lxp |+ x-1 >0 (2.18)

where x;, x_, and @ = 0 are real variables (Note: to avoid
dividing by zero, in practice a small positive number such
as 107% is added to the denominator in equation (2.18)).
Then the a-a scheme (Chang 1995) is formed by equation
(2.8) and
@) = @) = Wol(i)!, () @) (2.19)
Here the superscript “w” in the term (12)':');’ is used to
denote its weighted-average nature. Generally the a-«
scheme is stable if |[#] < 1 and @ = 0. Such a weighted-
average nature suppresses numerical wiggles near a
discontinuity if @ = 1 (Chang et al. 2000). It becomes
more dissipative as « increases and the Courant number | 7/
decreases. The a-a scheme has been extended to become
one-dimensional and multi-dimensional Euler solvers
(Chang 1995, Chang et al. 1999, Wang and Chang
1999a,b, Zhang et al. 2002). Also there are newly
developed Courant-number insenstive extensions of the
a-a scheme (Chang 2002, Chang and Wang 2003).
This subsection is concluded with the following remarks:

(a) Because W,(x_,x;; a) becomes the simple average of
x—and x4 if « = 0 or [x_| = |x,|, one has

a=0 or (2.20)

(e} = [

As such, the a-a scheme reduces to the scheme
formed by equation (2.8) and (itx)j’-Z = (ﬁfc);’ in a smooth

solutionregion (where (itx+)}’ =~ (ll— );‘),even ifa # 0.
The latter scheme is a special case of the a — € scheme
(Chang 1995) with € =1/2. It is devoid of the
special numerical dissipation associated with weight-
averaging.

(b) For the a-a scheme or any other dissipative CESE
solver of equation (2.1), the flux of h* is conserved
only over each CCE (see equation (2.12)), but not
each BCE. Compared with the a scheme, the a-a
scheme has a weaker form of global flux conservation
relation, i.e. the flux of h* is conserved over any
space-time region that is the union of any combination
of CCEs.

(c) Space-time grids that contain regions of different
time-step sizes will be introduced in sections 3 and 4.
For these grids, one can still define BCEs such that
any space-time region can be covered by the union of
a combination of non-overlapping BCEs. On the
other hand, a space-time region may not be covered
by the union of a combination of well-defined and
non-overlapping CCEs. As a result, the CCE-based
conservation relations of the a-a scheme established
above must be reformulated as BCE-based conserva-
tion relations before they become compatible with
the future development. As the first step of the
reformulation, in section 2.3 the concept of
generalized flux will be introduced and used to
show that, even for the a-a scheme, the generalized
flux is conserved over each BCE and over any space-
time region that is the union of any combination of
BCEs.

2.3 Integrated, assigned and generalized fluxes

For the a-« scheme, the flux of h* is conserved over each
CCE such as CE(j, n) shown in figure 1(e). In other words,
equation (2.12) is valid if, with the aid of equations (2.4),
(2.6) and (2.10),

§1 h* at any point on CB and CD is evaluated using
woland @),

§2 h™ at any point on ED and EF is evaluated using
! and @), and

§3 1" at any point on AB and AF is evaluated using u’
and (ﬁx);’.

However, for the a-a scheme, the flux of h* is not
conserved over each BCE such as CE_(j,n) and CE(j, n)
(see figure 1(c) and (d)). In other words, equation (2.7) is
not valid if

§4 h* at any point on AD (which is a part of SE(j, n)) is
evaluated using 7 and (ﬁx)j’-’.

Assume Rules §1-83. Then the above discussion
implies that, for the a-a scheme, the total flux leaving the
boundary of CE_(j, n) vanishes only if we ignore Rule §4
and instead assume the rule:
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§5 the flux leaving CE_(j, n) through AD is assigned to
be the negative of the sum of the fluxes leaving
CE_(j,n) through its other boundaries (the latter
fluxes are evaluated using Rules §1 and §3).

On the other hand (also for the a-a scheme), the total
flux leaving the boundary of CE. (j, n) vanishes only if we
ignore Rule §4 and instead assume the rule:

§6 the flux leaving CE ,(j, n) through AD is assigned to
be the negative of the sum of the fluxes leaving
CE.(j,n) through its other boundaries (the latter
fluxes are evaluated using Rules §2 and §3).

To proceed, Rules §1—-8§6 are further elaborated in the
following remarks:

(a) Obviously, a flux determined using any of Rules
§1-8§4 is fundamentally different from that deter-
mined using Rule §5 or Rule §6. The former is
determined through a surface integration while the
latter through a simple assignment. As such,
hereafter, the former is referred to as an integrated
flux (I-flux) while the latter an assigned flux (A-flux).

(b) Note that: (i) the sum of the I-fluxes leaving CE(j, n)
through its boundary is zero if they are evaluated
using Rules §1-§3; (ii) the boundary of CE(j, n) can
be divided into the line segments AB, CB, CD, AF,
EF, and ED:;, (iii) the boundary of CE_(}j, n) is formed
by AD and the first three line segments referred to in
item (ii); and (iv) the boundary of CE..(j, n) is formed
by AD and the last three line segments referred to in
item (ii). Thus one concludes that the A-flux leaving
CE_(j,n) through AD and that leaving CE(j,n)
through AD, as determined by Rules §5 and §6,
respectively, are the negative of each other. In other
words, these two fluxes represent the two values
of the same A-flux measured in two opposite
directions.

(c) Hereafter (see figure 1(c) and (d)), AB, CD, CB, and
AD are referred to as the top face, the bottom face, the
exterior side face and the interior side face of
CE_(j,n), respectively. Also, AF, ED, EF, and AD
are referred to as the top face, the bottom face, the
exterior side face, and the interior side face of
CE.(j,n), respectively. Note that the exterior side
faces CB and EF are the side faces of CE(j, n) while
the interior side face AD lies in its interior. According
to the above definitions, an I-flux is defined at each of
all four faces of a BCE while an A-flux is defined only
at the interior side face of the BCE.

(d) For the a scheme, the I-flux is conserved over any
BCE, i.e. the sum of the I-fluxes leaving any BCE
through its four faces is zero. As such, Rules §5 and
§6 imply that, for the a scheme, the I-flux and the
A-flux are identical at its interior side face. However,
the last assertion obviously is false for the a-«
scheme.

Given the above preliminaries, the generalized flux
(G-flux) leaving a BCE through its interior side face is
defined to be the A-flux leaving the BCE through the same
face, while the G-flux leaving the BCE through any one of
its other three faces is defined to be the I-flux leaving the
BCE through the same face. With these definitions, one
concludes that, for the a scheme, the a-a scheme and,
in fact, any CESE solver that satisfies equation (2.12), the
total G-flux leaving the boundary of a BCE wvanishes.
Moreover, because the G-flux leaving one of any two
neighboring BCEs through their interface is the negative
of that leaving another BCE through the same interface,
the local G-flux conservation relation eastablished above
leads to a global conservation relation, i.e. the G-flux is
conserved over any space-time region that is the union of
any combination of BCEs.

G-flux is only one of two basic conceptual under-
pinnings of the current LTS procedure. Another is
the concept of dual flux, a subject to be discussed in
section 2.4.

2.4 Dual scheme and dual flux

In the above scheme construction, it is assumed that (j, n) €
Q) where () is the set of the grid points (j, n) with (j + n)
being odd integers. The same construction can be repeated
assuming (j, n) € (), where (), is the set of grid points (j, n)
with (j + n) being even integers. The grid points in (), are
the unmarked points of intersection of the vertical and
horizontal grid lines depicted in figure 1(a). Obviously the
two CESE schemes that are constructed over €); and (),,
respectively, are independent of each other unless they are
coupled by some relations (e.g. boundary conditions)
unrelated to the internal scheme structure described above.
In the following, the combination of such two schemes will
be referred to as a dual scheme. As an example, the dual a-a
scheme is formed by equations (2.8) and (2.19) with (j, n) €
Q) where () = Q; U Q,.

As will be shown, the use of dual schemes is necessary
in the current LTS procedure. Its use plays a critical role in
simplifying the treatment of the communications across a
fine time step-coarse time step interface (i.e. an interface
separating two grid zones with different local time-step
sizes). As a preliminary, using rectangle ABCD depicted
in figure 1(c) as an example, several conceptual intricacies
unique to dual schemes are discussed in the following
remarks:

(a) Because the grid point (j — 1,n) is point B depicted
in figure 1(c), obviously rectangle ABCD is
occupied by both CE_(j,n) and CE, (j— I,n).
Thus a BCE is associated with two grid points, one
€ ), while another € (),. Hereafter, these two grid
points are referred to as the cohosts of the BCE.
Moreover, to avoid confusion, from now on a
space-time region such as ABCD will still be
referred to as a BCE while a space-time region with
a designated cohost such as CE_(j,n) will be
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referred to as a BCE". As such, two BCE"s can
occupy the same BCE.

(b) Generally two different local I-flux conservation
relations can be defined over a BCE. As an
example, for the dual a scheme, the local I-flux
conservation conditions

fl; h*ds=0, (j,n) €
S(CE-(j,n))

2.21)

and

R d3=0, (j—1,n)€E€Q (222

TJ;S(CEJr(j Lm)

are imposed over the same BCE, i.e. rectangle ABCD.
However, in equation (2.21), the I-fluxes over the four
sides of ABCD (hereafter they are referred to as the
I-fluxes associated with CE_(j,n)) are evaluated
assuming (i) AB and AD belong to SE(j, n), and (ii) CB
and CD belong to SE(j — 1,n — 1). On the other hand,
in equation (2.22), the I-fluxes over the four sides of
ABCD (hereafter they are referred to as the I-fluxes
associated with CE(j — 1,n)) are evaluated assum-
ing (i) BA and BC belong to SE(j — 1,n), and (ii) DA
and DC belong to SE(j,n — 1). As a result, one
concludes that: (i) two different I-fluxes are defined at
each side of ABCD—one is associated with CE_(j, n)
while another associated with CE, (j — 1, n); and (i)
equations (2.21) and (2.22) represent two totally
different conservation relations. According to the
previously established convention, the line segment
denoted by AD is considered as part of the SE centered
at point A while the same line segment denoted by DA
is considered as part of the SE centered at point D.

(c) Note that a side face of a BCE could be designated as
an interior or exterior side face, depending on how the
side face and BCE are designated. As an example,
because AD lies in the interior of CE(j, n), by
definition, AD is an interior side face of CE_(j,n).
On the other hand, because DA (which represents the
same line segment denoted by AD) lies on the exterior
of CE(j — 1,n), by definition, DA is an exterior side
face of CEL(j — 1,n) (which shares the same space-
time region ABCD with CE_(j, n)). Similarly, CB is
the exterior side face of CE_(j,n) while BC is the
interior side face of CE.(j — 1, n). Thus, (i) the A-flux
leaving CE_(j, n) through its interior side face AD, by
definition, is the negative of the sum of the I-fluxes
leaving CE_ (j, n) through AB, CB and CD; and (ii) the
A-flux leaving CE(j — 1, n) through its interior side
face BC, by definition, is the negative of the sum of the
I-fluxes leaving CE,.(j — 1,n) through BA, DC, and
DA.

According to the above discussions, two [I-fluxes,
one associated with CE_(j,n) and another with
CE.(j — 1,n), are defined at each face of rectangle

ABCD. In addition, an A-flux is defined at AD (the
interior side face of CE_(j,n)) and also at BC (the
interior side face of CE;(j — 1,n)). Let the G-flux at
each face of CE_(j,n) or CE4(j— 1,n) be defined
according to the rule given previously, then there exist
two different G-fluxes defined at each side of ABCD.
In addition, the G-flux associated with CE_(j,n)
(or CE4(j,n)) is conserved over ABCD.

To pave the way, a BCE" associated with any (j,n) €
Q,(/ = 1,2) will be referred to as a BCE" of ). Also any
G-flux associated with such a BCE" will be referred to as a
G-flux of Q),. Moreover, the dual flux (D-flux) at any face
of a BCE is defined to be the simple average of the
G-fluxes of ); and (),.

For an infinite uniform grid such as that depicted in figure
1(a), ; and (), are disjoint and a CESE scheme can be
applied separatively over them. Thus the two independent
local G-flux conservation relations defined over a BCE lead
to two independent global conservation relations, i.e. for
each/ = 1,2, the G-flux of (), is conserved over any space-
time region that is the union of any combination of BCE"s of
;. On the other hand, for a LTS procedure defined over
more complicated grids (see section 3), the grid points can
not, in general, be divided into two disjoint sets over which a
CESE scheme can be applied separately. Thus, for the
current LTS development, the use of a dual scheme is a must
and no longer there exist two independent global G-flux
conservation relations. However, as will be shown, many
concepts introduced above will survive and play a critical
role in the LTS development. In particular, local and global
D-flux conservation will be enforced in the current LTS
procedure.

3. Local time stepping

In this section, the grid structure is described, and the LTS
procedure and its justification are then discussed.

3.1 Grid structure

Consider the space-time grid depicted in figures 2 and 3, in
which a fine-grid zone B is sandwiched between two
coarse-grid zones A and C. The three grid zones are
defined by

MAx=x=0 (zone A) (3.1
M>Ax = x = M|Ax (zone B) (3.2)

and
M3Ax = x = M,Ax (zone C) (3.3)

respectively. Here (i) M|, M,, and M3 are given integers
with My =2, My = M, + 1, and M3 = M, + 2; and (ii)
Ax and Ar, respectively, are the spatial grid size and the
time-step size used in zones A and C. Their counterparts
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Figure 2. A computational domain containing fine and coarse grid zones (M; =2, M, =3, M3 =5, and R = 2).

used in zone B are given, respectively, by

AY = Ax/R, and Al = At/R, (3.4a)

To simplify the description of the LTS procedure, and
also to maintain a constant ratio of the time-step size to
the spatial grid size over different grid zones, the
refinement ratios R, and R, are assumed to satisfy the
condition

R, =R, =R (3.4b)
with R = 2 being an integer. It is worth noting that
through some straightforward modifications, the current
procedure is applicable even if R, and R, are arbitrary
positive numbers.

In zone A, a grid point (denoted by A7 and marked by a
dot in figure 3) is identified by a pair of indices j and n,
where

(J,m) € UA) ={(j,m|j=0,1,2,....Ja;

n and r, where

(j,n,r) € QB) = {(j,n,Nj=0,1,2,...,J4;
n=0,%1,%2,..:r=0,1,2,...,R} 3.7)

with J, = (M, — M)R. By definition, point B;l’r is
located at

x=x(B") = Ml—f-i Ax and
() = (w147

t= t(B;"r> = (n + %) At

Thus, for each j, the grid points B} - MR and B;'*O share the
same space-time location. They are considered as the
same grid point.

In zone C, a grid point (denoted by C; and marked by a
dot in figure 3) is identified by a pair of indices j and n,
where

(3.8)

(3.5) . o
n= 0, iL i27} (jan) € Q(C) = {(]7”)'] = 07 1727"'a‘lc;
n=0,*x1,%2 ...} (3.9
with J, = M. By definition, point A}l is located at
with J. = M3 — M. By definition, point C7} is located at
x= x(A;?) =jAx and t= t(Af) = nAt (3.6)

In zone B, a grid point (denoted by B and marked
by a cross in figure 3) is identified by a triple of indices j,

x= x(C}’) = (M, +j)Ax and
t= t(C}l) = nAt (3.10)

Note that, for each n, points Aﬁu and Bg‘o have the
same space-time location. In the LTS procedure to be

A} Al AlBBBlC) o c! described in section 3.2, two grid points with the same

space-time location but belonging to different grid zones

Bl B B! will be assigned with two different sets of grid variables.

¢ : Consequently, such two grid points must be treated

as two different grid points and denoted with different

A0 A0 AU B0 ROV {00 0 T o x e F X ; 0
o 1 2B B Bty I 2 symbols. For clarity, in figure 2, points A} and B

Figure 3. The grid points lying on and between the Oth and 1st time (n=0,1,2,...) are moved slightly to the left and right

levels (J, =J, =J. =R =2).

of their exact locations, respectively. This practice also
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applies to the grid points at the interface between zones

B and C.

This concludes the discussion of grid geometry. The
following are preliminary remarks on the application of
several previously introduced concepts over the current
more complicated grid.

(a) By definition, (i) rectangles A;HA;;;A;HA;, (j,n) €
Q(A)andj < J,, are the BCEs in zone A; (ii) rectangles
Bjr'lfl,rB;lgll,rB;;ll,r+lB;1f1‘r+1’ (]’ n, r) c 9(3)7] < -]b

and r < R, are the BCEs in zone B; and (iii) rectangles

C;lﬂcﬁll ClL €7, (j,n) € UC) and j < J., are the

BCEsinzone C. Thus the BCEs are nonoverlapping and

they can be used to fill the entire computational domain.

Consider figure 3. For an interior grid point in zone A,

say point A}, both CE (A}) and CE_(A}) are defined

and they occupy rectangles AY A9 A} A} and A) A? A]

A(l)7 respectively. On the other hand, for a boundary grid

point in zone A, say point A;, only CE_ (Aé) is defined

and it occupies rectangle A(f Ag A; Ai while CE ¢ (A;) is
undefined. Application of similar definitions to all grid
zones leads to the conclusions that: (i) two BCE"s are
assigned to each interior grid point of a grid zone while

only one is assigned to a boundary grid point; and (ii)

each BCE has two cohosts.

(b)

3.2 LTS procedure and its justification

To proceed, we begin with the following preliminaries:

(a) Three numerical analogues of u, du/dx and du/ot,
denoted by u(G), u,(G) and u,(G), respectively, are
assigned to each grid point G (which may represent
any A7, or B]'.”r, or C7). In addition, let (i)

367

and

u”(x,1;G) = u(G) + u(G)

X [(x = x(G)) — a(t — 1(G))] (3.13)

be the current versions of equations (2.4)—(2.6),
respectively; and (ii)

(1) = ()
w(B) = Sou(8) e G4
w(67) =5(9)

Also, hereafter let the 2 X 1 column matrix with
its first and second elements being u(G) and i, (G),
respectively, be denoted by g(G).

(b) Let (i) A;l*_l " (see figures 2 and 4) denote the point
with
x=(,— DAx and 7= (n —1 +£)At (3.15)
(i) C'f_l’r (see figures 2 and 5) denote the point
with

.
x=(M,+ DAx and t—(n—l—i—E)At (3.16)

(iii) u’(A;’;Jir) denote the first-order Taylor’s

approximation of u at point (A;;_l‘lr), evaluated in

terms of Z](Aja_ ,11); and (iv) u/(C’l‘—l,r) denote the first-
order Taylor’s approximation of u at point C} ',

evaluated in terms of :}(C’f*l). Then we have

R, t;,G) = (au”(x, ;. G),u” (x, ;G 3.11 _ At
5 506) = (@ % 66),ux66) - G1D ” (Ajﬂj{) - u(Ag;jl) +%u; (Aju’_ll)
2rv
_ n—1 _ ~ n—1
u(G) = —auy(G) (3.12) = ”(AJL,—I) Rk (Af,l—l) (.17
A?’l—l Al}a Bglo BIILO
(RJr)At (R—’r)At
R R
n-l.r n-lr n-lr

+ R
At AL

T R At
‘ n=l.r=1 n-1.r-1 noly |l ‘

4 1Al 5% B

(1= )AL {r—1)At 1

R R ‘
i . i

AL ATEp 8T x
Ax
| Ax &

Figure 4. The grid points neighboring to the interface separating zones A and B (R = 3 and r = 2).
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Figure 5.

and

M/(C771’r) = (Cn 1)_‘_% (Crlt—l)

2rv

=u(C) - ()

(3.18)

The validity of the last equality sign in either
equation (3.17) or (3.18) follows from equations
(3.12) and (3 14), and v = aAt/Ax.

(¢) Let(i)u (B )be the first-order Taylor’s approximation
of u atpoint B’ ,evaluated interms of (B}~ LR-1
figure 4); and (ii) u (B'j’ 0 1) be the first-order Taylor’s
approximation of u at point (B™° 7,—1), evaluated in terms

of q(Bﬁb llR ') (see figure 5). Then we have

—1p— At R
M/(Brll,O) Eu<Biil LR 1) +—ut(B'f LR 1)
R
- u(B'f_l"R_]> - 21;51,6(3’;“"’*“) (3.19)

and

0
/()

At —1p—
1,R—1 1.R—1
(B )+ g (B

u(B’};_‘f*) — 2, (Bj,j_li“) (3.20)

(d) Let PQ be aface of a BCE" denoted by V (see figure 6).
Let G be a grid point that may or may not coincide with
point P or point Q. Then

I(PQ;G;V)= J_ﬁ*(x,t;G)-dE (3.21)
PO

Here ds =don with (i) do being the length of a differential
element of PQ; and (ii) 7 being the unit vector normal to PQ
and pointing outward from V. Note that: (i) with the aid of
equations (3.11), (3.13) and (3.21), I(PQ;G;V) represents
the I-flux leaving V through PQ and is evaluated using g(G);

The grid points neighboring to the interface separating zones B and C (R = 3 and r = 2).

and (ii) for simplicity, hereafter we adopt the abbreviation:

I(PQ;V)=1(PQ;P;V) (3.22)

Based on the above preliminaries, we now provide a step-
by-step description of the current LTS that occurs between
t =(n— 1)Ar and t =nAr. It is then followed by an
explanation of why the LTS procedure is so constructed. We
consider only the case n = 1. The general case, however, can
be constructed by simply replacing the coarse time level
indices “0” and “1” with “n — 1" and “n”, respectively.

§1. Because a > 0, equation (2.1) models a convective
process in which information propagates from left to right.
As aresult, we can assume that the initial data at # = 0 and
the boundary data at x = 0 are given. Thus (}(A(l)) can be
specified using the given left boundary data. On the other
hand, Zj(C}C) can be evaluated using the boundary
condition

q(Cj) = vg(Cj _ )+ (1 — »g(Cy) (3.23)

which can be derived from the method of characteritics.
Alternatively, one can assume that

G(A)) = G(A)) and §(C))=g(C _)) (3.24)

For the CESE method, the boundary conditions given in
equation (3.24) are non-reflecting in nature (Chang et al.
2003) if (i) u(x,0)) based on which the grid initial data are
specified) has a flat profile outside a bounded interval, i.e.

u,(x_), if —oo <x=ux_
u(x,0) = (), if xo <x <xy (3.25)

uy(xy), if xp =x<+o0

Q R

t
v
G
P S X
Figure 6. A point G and an edge PQ of a rectangle V.
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where x_ and x, are given constants, and u,(x) is a given
function; (ii) A) and A) lie on the left boundary of a
uniform space-time grid zone that has a width = 2Ax_,
where Ax_ is the spatial grid size of this zone; (iii) CO and
C} lie on the right boundary of a uniform space- “time grid
zone that has a width = 2Ax,, where Ax, is the spatial
grid size of this zone; and (iv)

x(A )+ 2Ax- =x- <xy = x(C ) —2Axy (3.26)

§2. Using the dual a-a scheme, (i) for each j =
1,2,3,..,Ja — 1, q(A ) is determined in terms of q( 1)
andq( j+l) and(u)foreach] =1,2,3,. -1 q(C )is
determined in terms of q( D) and q(C +1)

§3. Using the dual a-« scheme (w1th the understanding
that Ax and Ar are replaced by Ax/R and A#/R, respectively),
foreachr— 1,2,3,.. Randeach]— 1,2,3,...,J, — 1,
q(B "is determmed in terms of q(B ) ) and q(BOJ: 1) As
an example q(B )1s determined in terms of G(B, ) and

(B0 0) (see figure 3).

§4. For areason to be given later, q(B N,r=1,2,...,R,

are updated using (see figure 4 with n = 1).

u(By") = 2R+ T A
+yﬁ;{a—ww—a + B
+ V[u Qr%’ ](A0 )} (3-27)
and
m#ﬁ——@w%—’@”ﬂ (3.28)
Note that:

(a) To simplify notation, hereafter we adopt a convention
that can be explained using an expression on the right
side of equation (3.27) as an example, i.e.

[u— (14 )i JBY ™)

=uB) " — (1 + i B (3.29)

(b) Because u(A ) is a function of q(A _1) (see
equation (3. 17)) equations (3.27) and (3. 28) imply
that q(BO "y is a function of q(A ,1),§(A9“), and
G,

(c) By using equations (3.6), (3.8), (3.11), (3.13), (3.14),
(3.21), and (3.22) and also Remark (a) given
immediately following equation (2.11), one
concludes that equations (3.27) and (3.28) follow
from

u(By") — u'(AY" )
Ax

u(By") = (3.30)

and

1By 'By":AY s V) +1(By B)":V)

+IBY By v+ 1BY B v)=0 (3.31)
Where V= CE+(B "). Equation (3.30) states that
uX(B ") is equal to the finite-difference approxrmatron
of du/ox at B0 evaluated from the left using u(BO )
and o/ AOr 1)- On the other hand, equation (3.31)
represents a flux conservation condition over
CE+(Bg’r) involving only I-fluxes.

§5. For a reason to be given later, t?(Bg’br) r=1,2,..,R,
are updated using (see figure 5 with n = 1)

u(By) = g (€
2R N\A 0.r—1
T {(1 + )i+ (1 — B
_V{u @r ; Dy, ](c )} (3.32)
and
B = 55 [V~ u] 333
Note that:

(a) Because v/ (C ") is a function of q(CO) (see equation
(3.18)), equations (3.32) and (3.33) 1mp1y that q(B0 D)
is a function of q(CO), (CO) and q(B 1 )

(b) It can be shown that equations (3. 32) and (3.33)
follow from

/(C() r) _ (B%,’r)

ud(By)) = ———

(3.34)
and
1(B) ™' BY Co:V)+1(BYB) 3V)
+IBY ' BY V) +I(B) B 1V)=0 (3.35)
where V=CE_ (BO r) Equation (3.34) states that
u(B -]b) is equal to the finite-difference approxi-
mation of du/dx at BY” ;, evaluated from the right using
’(CO "y and u(B ) On the other hand, equation

(3.35) represents a flux conservation condition over
CE_(Bg‘b") involving only I-fluxes.

§6. For a reason to be given later, (A} ) is updated
using (see figure 4 with n = 1).

R 2(1
uA},) = 5B+ ; . Dt (1= i), )
2
- 2)§ (= i) (BY) (336)
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and

i(A) ) = g [u’(B}’O) — u(A} ) (3.37)

Note that:

(a) Because u(B1 O) is a function of q(BOR 1)
(see equation (3.19)), equations (3.36) and (3 37)
imply that qAJ is a function of q(BOR 1), (A s
andq(B N, r=0,1,2,...,R— 1.

(b) It can be shown that equations (3.36) and (3.37)
follow from

W' (BY") — u(A} )
(A ) = 1 Ja 3.38
1:(4;,) Ax/R (:3%)
and
R-1 .
> 1By By V) + AT A3 V)
r=0

+ 1A A V) +1A) A) ;V)=0 (3.39)

where V = CE_ (A ) Equation (3.38) states that
ux(A ) isequal to the finite-difference approximation
of dulox at (A1 ) evaluated from the right using
u(BlO) and u(A ) On the other hand, equation (3.39)
represents a flux conservation condition over
CE-(A} ) involving only I-fluxes.

§7. For a reason to be given later, Z](C(l)) is updated using
(see figure 5 with n = 1).

R
u(Co) = By
2(1 —
+ %[w — (1 + »)i,1(CY)
R( ki 2) Z (= vi)B))  (3.40)
and R
i(Ch =3 [u(c(‘)) - u’(B};O_,)] (3.41)
Note that:

(a) Because u(B _1) is a function of q(thR 11) (see

equation (3. 20)) equations (3.40) and (3.41) imply
that q(CO) is a function of q(BOR,II)7 q(C0)7 and
a8y, r=0,1,2,...,R— L

(b) It can be shown that equations (3.40) and (3.41)
follow from

u(Cy) — (B, )

b= 42
u(Cyp) Ax/R (3.42)
and
Z 1B BY V) + I(CYCL; V) + 1(CYCY; V)
+1(C°Ct, vy =0 (3.43)

where V = CE+(C0) Equation (3.42) states that MX(CO) is
equal to the finite-difference approx1mat10n of du/dx at C0
evaluated from the left using u(CO) and u/ (B1 0,1) On the
other hand, equation (3.43) represents a flux conservation
condition over CE+(C(I)) involving only I-fluxes.

This concludes the description of the LTS procedure.
In the following, using the grid structure depicted in figure 3
as an example, we will explain why the procedure is so
constructed. In particular, it will be shown that the current
construction results in a key conservation property, i.e. the
D-flux is conserved over any space-time region that is
the union of any combination of BCEs.

As a preliminary, the G-fluxes associated with the
current grid structure are defined in the following remarks:

(a) LetV = CE+(A(1)). By definition, the G-fluxes leaving
V through AJA], AJAJ, and AJA| are I(AjA};V),
1 (A?Ag; V), and I(A?A}; V), respectively. In addition,
the G-flux leaving V through (AéAg)(an A-flux) is the
negative of the sum of those leaving through other

faces. Thus the G-flux is conserved over CE+(A5).
(b) Let V= CE_(A}). By definition, the G-fluxes
leaving V through A{A(l),AgA?,and AgA(l) are
I(AiAl;V),I(AgAO;V) and I(A8A1;V), respectively.
In addition, the G-flux leaving V through (AjA?)
(an A-flux) is the negative of the sum of those leaving

through other faces. Thus the G-flux is conserved over
CE_(A)).

(¢) Let V= CE+(A%). By definition, the G-fluxes
leaving V through AiA;,AgA?,Bg’OBg’I and Bg’lB(l)"O
are  I(AIAL; V), 1(A9A%; ), 1(BY By ' A; V) and
1 (Bg'lB(l,’O;Ag; V), respectively. In addition, the G-flux
leaving V through A]A (an A-flux) is the negative of the

sum of those leaving through other faces. Thus the G-flux
is conserved over CE (A i ). Furthermore, because points
Bg,o and B(l)’o
respectively, equations (3.21) and (3.22) imply that

coincide with points A} and A},

1A%AL; v) = 1(BY°BY; A9; V)

+ 1(BY' By AS; ). (3.44)

As such the G- ﬂux leaving Vthroughm (the union
of By’BY" and By' By is I(AJAL; V).

(d) LetV =CE_ (Az). By definition, the G-fluxes leaving V
through m,m, and M are I(AéT; V),
1(14(1)7; V), and I(A?Ai; V), respectively. In addition,
the G-fluxes leaving V through By "By"' and BY'' By " are
I (Bg’OBg’l; V), I(Bg’lB(I)‘O; V), respectively. Equation
(3.39) coupled with the above definitions implies that the

G-flux is conserved over CE_(A}).
() Let V=CE,(B)'"). By definition, the G-fluxes
leaving V through (B)'B""), (BY'B)"), (BB,
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and (BY’BY") are I(BY'BY'; V), I(BY°BYC; V),
I(B?’OB?’]; V), and I(Bg"OBg’l;Ag; V), respectively.
Equation (3.31) coupled with the above definitions
implies that the G-flux is conserved over CEJF(BS’l ).

(f) LetV =CE, (B(l,’o). By definition, the G-fluxes leaving
V through By"B|°, BY'B)', BY'B}°, and B)'B,”,
are I1(By"B}"; V), 1(BY'BY'; V), I(BY' B}, V), and
I(Bg’lB(l)’O;Ag; V), respectively. Because (i) for each j,

B} ~Rand B} ¥ represent the same grid point, and (ii)
n = land R = 2 are assumed in figure 3, equation (3.31)
coupled with the above definitions implies that the
G-flux is conserved over CE+(B(1)‘0).

(g) Let V= CE,(B?‘I), By definition, the G-fluxes
leaving V through B)'By', BY'B)°, and B)'B’
are 1(BY'BY'; V), I(BYBY; V) and I(BY°BY'; V),
respectively. In addition, the G-flux leaving CE_(B(I)’I)
through B?’IB?'O (an A-flux) is the negative of the sum of

those leaving through other faces. Thus the G-flux is

conserved over CE_ (B?' ! ).

(h) Let V= CE,(B}’O). By definition, the G-fluxes
leaving V through B i’OB(l)’O, Bg‘lB(l)"l7 and Bg"lB(l)‘0
are 1(B"By"; V), I(BY'BY'; V), and I(B)'By°; V),
respectively. In addition, the G-flux leaving CE,(B}*O)_
through (Bi ’OB?" ) (an A-flux) is the negative of the sum
of those leaving through other faces. Thus the G-flux is

conserved over CE_ (Bi'o).

(i) The G-fluxes associated with CE_(C}), CE,(C)),
CE_(C}), CE.(C)), CE_(BY"), CE_(B}"), CE,
(B(l)’l)7 and CE+(B1”0) are similarly defined. Using
equations (3.35) and (3.43), one concludes that the
G-flux is conserved over each of above BCE#*s.

The G-fluxes associated with the BCE#*s that lie between
any pair of consecutive time levels are defined in a way
identical to that described above. As such the G-flux is
conserved over all BCE"s. Moreover, because (i) each BCE
are occupied by two BCE"s (i.e. there are two different sets
of conserving G-fluxes defined at the boundary of each
BCE), and (ii) the D-flux at any face of a BCE is defined to be
the simple average of the two G-fluxes defined there, it
follows that the D-flux is conserved over each BCE. As such,
to show that the D-flux is conserved over the union of any
combination of BCEs, one needs only to show that the D-flux
leaving one of any two neighboring BCEs through their
interface is the negative of that leaving the other BCE
through the same face.

To proceed, consider AYA}, a vertical interface in the

interior of zone A. By definition, the G-fluxes
leaving CE;(A})) and CE_(A})) through AJA] are
I(AYA];CE(A})) and I(A%A};CE_(A)})), respectively
(see items (a) and (d) above). Because the unit vector

normal to AYA] and pointing outward from CE. (A}) is the

negative of that normal to AYA| and pointing outward from
CEf(A;), equations (3.21) and (3.22) imply that
I(AYA]; CEL(A))) + I(A%A}];CE_(A) =0 (3.45)

Moreover, by definition, the G-fluxes leaving CE_ (A1)
and CE+(A{) through AiA(l) are the A-fluxes

AAJA; CE_(A}) = —[I(A]A}; CE_(4})

+ I(AJAY; CE_(A}))

+I(ADALCE_(Al)]  (3.46)
and
A(AJAT; CE(A]) = —[I(A]AL; CE, (4})
+ I(AJAT; CE.(4]))
+IAALCELA)]  (34T)

respectively (see items (b) and (c) above). Because Z](A})
is evaluated in terms of Z](Ag) and é(Ag) using the a-a
scheme, one has the conservation condition

% R di=0
S(CE(A}))

Equation (3.48) implies that the sum of the six /-fluxes in
the brackets on the right side of equations (3.46) and (3.47)
vanishes. Thus it follows from equations (3.46) and (3.47) that

(3.48)

A(AIAY; CE_(A])) + A(AIA%CEL(A) =0 (3.49)

Because CE+(A(1)) and CE_(Ai) occupy the same
rectangle AJAJA A} while CE_(A}) and CE(A]) occupy
the same rectangle A?AgAéA{, the D-fluxes leaving the
BCEs (rectangles) AJAJA]A) and AJASAJA] through
AlAY, by definition, are

[I(m {CE4(A}) + A(AIAT; CE,(A}))} /2 (3.50)
and
[I(m {CE_(A) + A(AIA”; CE+(A{))] /2 (351)

respectively. It follows from equations (3.45) and (3.49)
that the above two D-fluxes are the negative of each other.
By applying similar arguments, one concludes that, for
any two neighboring BCEs that are in the same grid zone
and share a vertical interface, the D-flux leaving one of
these BCEs through the interface is the negative of that
leaving the other BCE through the same face.

Next consider Bg’OBg‘l, a vertical interface separating

two BCEs in zones A and B, respectively. By definition, the
G-fluxes leaving CE, (A}) and CE (B)'") through By B
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are I(BY°B)"; AY; CE,.(A})) and I(B)°B)'; AY; CE.(B)'")),
respectively (see items (c) and (e) above). Moreover, the
G-fluxes leaving CE_ (Aé) and CE_ (B(l)"l) through Bg"OBg’l
are  I(BY°BY';CE_(A}) and [I(BY°B)';CE_(B"")),

respectively (see items (d) and (g) above). Because the

unit vector normal to Bg’OBg’l and pointing outward from
the BCE AJASA}A; (which are occupied by both CE..(A})
and CE_ (A})) is the negative of that normal to 38’033-1 and
pointing outward from the BCE Bg"OB(l)’OB(l)’lBg’1 (which are
occupied by both CE+(Bg"l) and CEf(B(l)’l)), equations
(3.21) and (3.22) imply that

1(By By :A%: CEL(A])

+I(BY’BY;AS;CEL(BY' ) =0 (3.52)

and
1(BY°BY";CE_(A))) +1(BY By ;CE_(B)')=0 (3.53)

i.e. the two fluxes that appear in equation (3.52) or equation
(3.53) are really the two values of the same /-flux measured
in two opposite directions. By using equations (3.52) and
(3.53), one concludes that the two D-fluxes leaving the
BCEs A%A941A! and By°B)°B)"' By through BY'By " ie.

1BY By ;A% CE(A))

+I(W;CE,(A;))} /2 (3.54)
and

1(BY°BY ;A% CE.. (BY")

+I(W;CE,(B?J))} /2 (3.55)

are the negative of each other. By applying similar
arguments, one concludes that, for any two neighboring
BCEs that are in different grid zones and share a vertical
interface, the D-flux leaving one of these BCEs through the
interface is the negative of that leaving the other BCE
through the same face.

Next consider AJA}, a horizontal interface separating
two BCEs in zone A. By definition, the G-fluxes leaving
CE.(A})and CE_(A)}) through A}A} are I(A]A}; CE (A}))
and I(AJA}; CE_(A))), respectively (see items (c) and (d)
above). Because CE+(A}) and CE_(Aé) occupy the same
BCE A%4941A! by definition, the D-flux leaving the BCE
through A[A] is

I(AIA};CEL(A]) + I(AJAT: CE_(4})| /2 (3.56)

Similarly, it can be shown that the D-flux leaving the
BCE A]A}A3A7 (which sits right above the BCE AJA%AA|

and is occupied by both CE_(A3) and CE . (A?)) is

[I(W;CE,(A@)H@W; CE,(A)]/2  (3.57)

Because the unit vector normal to AJA) and pointing
outward from the BCE AYA9AJAl is the negative of that
normal to AjA} and pointing outward from the BCE
AJAJA3A3, equations (3.21) and (3.22) imply that the two
D-fluxes given in equations (3.56) and (3.57) are the negative
of each other. By applying similar arguments, one concludes
that, for any two neighboring BCEs that are in the same grid
zone and share a horizontal interface, the D-flux leaving one
of these BCEs through the interface is the negative of that
leaving the other BCE through the same face.

It has been shown that the D-flux leaving one of any two
neighboring BCEs through their interface is the negative
of that leaving the other BCE through the same face.
This coupled with the established fact that the D-flux is
conserved over each BCE implies that the D-flux
is conserved over the union of any combination of BCEs.

Aside from preserving the above conservation property,
as will be shown immediately, the current explicit LTS
performed along an interface separating two grid zones of
different time-step sizes is also designed to maintain
scheme stability and facilitate information transfer across
the interface and yet use only the smallest stencil possible.

As an example, consider the time stepping performed

along AgAé. According to steps §3, §4, and §6 of the LTS
procedure presented earlier, (i) Zj(Bg"l) is evaluated in
terms of §(A?), (A9), and §(BY?), (ii) (B}") is evaluated
in terms of g(AY), g(AY), and GBY"), (i) G(AL) is
evaluated in terms of g(BY"), G(BY"), 4(BY"), and G(A?),
and (iv) Z](B?’l) is evaluated in terms of Z](Bg’o) and é(Bg’O).
Moreover, by combining the fact presented above, one
also concludes that (i) é(B(l)’O) is a function of Q(A(l)), Z](Ag),
(}(Bg’o), and E](Bg’o); and (ii) Z](Aé) is a function of Z](A(l))7
4(AY), g(BY"), (BY?), and G(BY?). As such, the numerical
domains of dependence for Z](Bg'l), (}(B(l)’o), and g(A}) at
t=0are A?B(l)"o, A?Bg’o, and A?Bg’o, respectively. Because
each of A?B(l)’0 and A?Bg‘o is the union of two finite

domains in zones A and B, respectively, by adjusting Az

for either the advection speed a = 0 or @ = 0, one can
fulfill the stability requirement that the analytical domain
of dependence must be a subset of the numerical domain
of influence. As such, the current LTS procedure can be
extended to simulate Euler flows in which information

may propagate in all directions.
This section is concluded with the following remarks:

(a) Based on the fact that these procedures are
constructed in such a manner that the analytical
domain always falls within the numerical domain if
the CFL number <1, and also on the results of



(b)
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numerical experiments, it is concluded that the
current LTS procedure and its Euler extensions
generally are stable if (i) the CFL number <1 for all
space-time grid cells in all grid zones, and (ii) o = 1.
Also, these LTS procedures generally become more
dissipative as « increases and the CFL number
decreases. To prevent excessive local numerical
dissipation, it is desirable that, by adjusting local
time-step size, the CFL number be kept above some
bound (say 0.3) for all grid cells. It is expected that
the above general criteria is applicable even in the 2D
and 3D cases to be discussed below.

In a 2D CESE solver, each analytical variable u is
associated with three grid variables uj, (Mx)}lk, and
(uy);’k at each “solution point” (j, k, n) (Chang et al.
1999, Wang and Chang 1999a, Zhang et al. 2002).
The spatial grid can be generated from triangles
(Chang et al. 1999, Wang and Chang 1999a) or
quadrilaterals (Zhang et al. 2002). For a standard
solver with a triangle-based (quardrilateral-based)
spatial grid and a spatially independent time-step,
each interior solution point is associated with three
(four) BCEs. Moreover, regardless of whether the
spatial grid is generated from triangles or quadri-
laterals, each BCE is a space-time cylinder with the
top and bottom faces being quadrilaterals. As such, at
each time level, an interior solution point is
associated with three or four quadrilaterals (in fact,
the solution point associated with the common vertex
of these quadrilaterals is the centroid of the union of
the same quadrilaterals). Note that: (i) for a nonuni-
form spatial grid, a solution point generally does not
coincide with the commom vertex of the associated
quadrilaterals; and (ii) concepts similar to the I-, A-,
G-, and D-fluxes were introduced in the 2D cases
(Wang and Chang 1999a, Zhang et al. 2002) albeit
that different terms are used (in fact, the generalized
flux and the dual flux defined here were referred to as
the modified flux and the generalized flux there,
respectively).

Based on the above description, the 1D CESE
LTS procedure described above can be easily
extended to become its 2D version. Specifically, (i)
interior solution points of a grid zone of uniform
time-step size are defined using the definition given
in (Wang and Chang 1999a); (ii) for the top or
bottom face (which is a quadrilateral) of each
boundary BCE of a grid zone of uniform time-step
size, one of its vertices is associated with an
interior solution point while the one facing the first
vertex is designated as an exterior solution point of
this grid zone; (iii) solution points with the same
space-time location but belonging to grid zones of
different time-step sizes are again assigned with
independent sets of grid variables; (iv) the
unknowns at an interior solution point of a grid

zone can be evaluated using the 2D dual a—«
scheme (Chang et al. 1999); and (v) the three
unknowns at an exterior solution point are
determined using an I-flux conservation condition
(the counterpart to the 1D condition such as
equation (3.31)) and two finite-difference con-
ditions (the counterparts to the 1D condition such
as equation (3.30)) that provide the grid analogues
of u, and u,. Note that, other than it must involve
at least three different grid values of u, construc-
tion of the grid analogues of u, and u, has a high
degree of freedom. However, to maintain stability
and facilitate information transfer across the
interface without incurring excessive numerical
dissipation, the analogues should be constructed
with a minimum stencil and yet using the
information from all grid zones converging on
the interface grid point under consideration.

(¢) In a 3D CESE solver, each analytical variable u is
associated with four grid variables at each solution
point (Wang and Chang 1999a, Zhang et al. 2002).
The spatial grid can be generated from tetrahedrons
(Wang and Chang 1999a) or hexahedrons
(Zhang et al. 2002). For a standard solver with
a tetrahedron-based (hexahedron-based) spatial grid
and a spatially independent time-step, each interior
solution point is associated with four (six) BCEs.
Albeit it is more complex, nevertheless a 3D version
of the current 1D LTS procedure can be built using
the guidelines similar to those provided for the
construction of a 2D LTS procedure.

(d) Because the spatial grid structures used in the LTS
procedures described above are fixed in time, these
procedures cannot be used in simulations in which
accuracy consideration requires that spatial fine-grid
zones be moved with time (how they are moved with
time is a subject beyond the present work—here it is
simply assumed that at some time level, say r = ", a
reconstructed spatial grid with a new grid point
distribution is given). This limitation, however, can be
overcome if the LTS procedures are complemented by
the spatial grid value reconstruction procedures to be
described in section 4.

4. Spatial grid value reconstruction

As a preliminary, consider any set of grid points
Go, Gy, G,, ..., Gg which lie on the time level 1 = " and
satisfy

X(Gy) < X(Gy) < x(Gs) < -+ < x(Gg) 4.1)

Here (i) = t" represents a common time level of all
space-time grid zones, and (ii) x(P) denotes the
x-coordinate of any point P. Let (i) k be any integer with
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0 = k <K, (ii) P and P}, be two points with r = ¢" and

Gy = x(Py) = x(Py) = x(Gyp1), (4.2)
and (iii) V" be the space-time region r <<t". Then,
according to the definitions given earlier, the D-flux
leaving V" through PP} is

D(PiP; Gi, Git1; V")
1r — I
= > [1PP; G vy + 1P G v (43)
Here, for any points P, Q, and G lying on the time level
t=1t",
max {x(P),x(Q)}

u'(x,t"; G)dx
min{x(P),x(Q)}

1(PO: G: V™) = J (4.4)

Obviously equation (4.4) follows from equation (3.11)
and (3.21).

Moreover, for a line segment with # = ¢" and not being
bounded by two neighboring grid points, the D-flux
leaving V" through the line segment can be defined in
terms of the component D-fluxes defined in equation (4.3).
As an example, let P and Q be two points with = ¢" and

x(Go) = x(P) < x(G1) < x(Q) = x(G2) 4.5)

Then, by definition, the D-flux leaving V" through PQ is
D(PQ; Gy, Gy; V") = D(PGy; Gy, G1; V")

+ D(G1Q;G1, G V") (4.6)

For simplicity, hereafter we adopt the abbreviation:

D(PQ; V") = D(PQ; P,Q; V") 4.7)

According to equations (3.21) and (3.22), the I-flux
I(PQ; V") is only a function of g(P). On the other hand,
according to equations (4.3), (4.4), (4.6), and (4.7), the
D-flux D(PQ; V") is a function of the set {g} associated
with the grid points P and Q and all the grid points
sandwiched between P and Q.

With the above preparations, the essence of the current
spatial grid value reconstruction (SGVR) procedure will
be described using figure 7 where the given “original” and
“reconstructed” spatial grids at ¢ = ¢" are depicted. In each
grid, a uniform spatial fine-grid zone B is sandwiched
between two uniform spatial coarse-grid zones A and C.
Moreover we assume that

X(Ag) = x(A)) = 0 (4.8)

x(A1) = x(By) = x(A}) = Ax 4.9)

x(B1) = (3/2)Ax (4.10)

X(By) = x(A}) = x(B)) = 2Ax (4.11)
x(B3) = x(B,) = (5/2)Ax (4.12)
X(Bs) = x(Cy) = x(B}) = 3Ax (4.13)
x(B}) = (7/2)Ax (4.14)

x(Cy) = x(B,) = x(C}) = 4Ax (4.15)
xX(C) = x(C}) = 5Ax (4.16)

It follows from equations (4.8)—(4.16) that, in either the
original or the reconstructed grid, two neighboring grid
points in zone A or C is separated by a distance Ax while
two neighboring grid points in zone B is separated by a
distance AxX' = Ax/2.

In the current development, the set of the grid values
{q} of the reconstructed grid points (see figure 7b) will be
evaluated in terms of the set of the known grid values {g}
of the original grid points (see figure 7a) in a manner that
is consistent with a D-flux conservation condition, i.e. the
D-flux leaving V" through any reconstructed grid interval
evaluated using the reconstructed {g} is identical to that
evaluated using the known original {g}. The above
condition by no means implies that the D-flux leaving V"
through any original grid interval evaluated using the
original {g} is identical to that evaluated using
the reconstructed {g}. Thus, in the current development,
the D-flux is generally not conserved over a space-time
region that is the union of a combination of BCEs unless
each interface that splits the region into two with one
being above and another below a reconstruction time level
is the union of reconstructed grid intervals.

Also, by no means, the above imposed D-flux
conservation condition provides an unique solution of
the “reconstructed” {g} in terms of the known “original”
{g}. In the following, we describe two of the simplest
procedures by which the “reconstructed” {g} can be
uniquely determined.

With the aid of equations (4.4) and (3.22), the
first SGVR procedure is specified using the following
rules:

(b) A Ay A8, B B, By B,G ¢
X

(a)

Ag ABy By By By BG Cp G G

Figure 7. (a) The original grid points, and (b) the reconstructed grid
points, at the time level 1 = ¢".
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§1. No reconstruction of grid values is required for the
end grid points A} and C', i.e.

4(A}) = G(Ag) and §(Ch) = G(Cy) 4.17)
As such, we have
IAQAT; V") = I(A¢A1; V") (4.18)

and
I(C\C; V) = I(C,C13 V™) (4.19)

§2. g(A}) is determined in terms of §(A,), ¢(By), and
¢(By) by assuming

IALAR VT = IA A V") (4.20)
and
I(AYAL; V") = I(BoB1; V") + I(B 1By V") (4.21)

§3. g(A}) is determined in terms of §(B;), ¢(B), and
4(B)) by assuming

I(ALA; V™) = I(ByB; V") + I(B1By; V") (4.22)
and

u(By) — u(Ay)

ux(A/z) = Ax

(4.23)
Note that, according to §5, §(B|) = §(B3).

§4. §(By)) is determined in terms of g(B,) and g(A}) by
assuming

I(ByB; V") = I(B,B3; V") (4.24)
and
u(BL) — u(A))
(B = ———— 1 4.25
ux(By) Ar (4.25)
§5. g(B)) is determined by assuming
I(B\By; V") = I(B3By; V") (4.26)
and
I(B\By; V") = I(B3B4; V") 4.27)

In fact, equations (4.26) and (4.27) imply that §(B)) =
q(BY).

§6. §(BY) is determined in terms of g(B);) and g(Cy) by
assuming

I(B,B|; V") = I(B4B3; V") (4.28)
and

I(BYB; V") = I(CyCr a3 V") (4.29)

where C| ) is a point with t = ¢" and x(C ) = x(B}).

§7. ¢(B) is determined in terms of §(Cy) and §(C;) by
assuming

I(ByB,; V") = I(CoCy ;3 Cis V") (4.30)
and
I(B,B); V") = I(Cy ;5C1; Co; V") (4.31)

§8. g(B)) is determined in terms of g(C;) and §(C))
by assuming

I(B}B5; V") = I(C,Cy5; V") (4.32)

and
u(C) — u(B))

ux(By) = Ar

(4.33)
§9. §(Cy) is determined in terms of §(C,) and g(B%) by
assuming

I(C)C}, V") = I(C,Cy: V") (4.34)

and
u(Cp) — u(BY)

i (4.35)

ux(Co) =

With the aid of equations (4.1)—(4.16) and (3.22),
equations (4.18)—(4.22), (4.24), (4.26)—(4.32), and (4.34)
imply that the reconstructed {g} does indeed satisfy the
D-flux conservation condition if it is specified according to
the above SGVR procedure.

With the aid of equations (4.3)—(4.7), and (3.22), the
second SGVR procedure is specified using the following
rules:

§1. g(A}) is detemined in terms of §(Ao) and g(A;) by
assuming

u(Al) = u(Ao) (4.36)

and

I(ALA V™) = D(AgA; V™) (4.37)

§2. g(A) is determined in terms of §(Ao), §(A1), ¢(Bo),
4(By), and g(B;) by assuming

IAVAL V™) = D(AA1; VT (4.38)
and
I(AVAL; VY = D(ByB2; V") (4.39)

§3. g(A%) is detemined in terms of §(By), §(B1), ¢(Ba),
and g(B)) by assuming equation (4.23) and

I(ALA; V™) = D(ByBy; V") (4.40)
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Note that, in §5, §(B}) is determined in terms of §(By),
4(Bs), and G(By).

§4. §(By) is determined in terms of g(A)), g(B,) and
4(B3) by assuming equation (4.25) and
I(ByB; V") = D(B,B3; V") (4.41)

§5. g(B)) is determined in terms of g(B,), ¢(B3), and
4(B4) by assuming

I(B\By; V") = D(B2B3; V") (4.42)
and

I(B\By; V") = D(B3B4; V") (4.43)
§6. ¢(B)) is determined in terms of §(B3), §(B4), §(Co)
and g(C;) by assuming

I(B,B}; V") = D(B3B4; V") (4.44)
and

I(ByBS; V") = D(CoC p; Co, C13 V") (4.45)

§7. §(BY) is determined in terms of §(Co) and g(C;) by
assuming

I(B3B5; V") = D(CoC 5 Co, C13 V") (4.46)

and

I(B3B); V") = D(C,,Cy;Cp, C1; V") (4.47)

§8. g(B)) is determined in terms of §(Cy), ¢(Cy) and
4(C)) by assuming equation (4.33) and
I(ByB5; V") = D(Cy2Cy; Co, C1; V") (4.48)

Note that, in §10, §(C)) is determined in terms of G(C})
and g(C»).

§9. g(C}) is determined in terms of g(Cy), g(C»), and
§(B%) by assuming equation (4.35) and

I(C)C; V") = D(C1Cy; V") (4.49)

§10. g(C)) is determined in terms of ¢(C;) and g(C,)
by assuming

u(Ch) = u(Cy) (4.50)
and
I(C\Cy; V") = D(C1Cp; V™) 4.51)
Note that:
(a) Equations (4.37)—(4.49) and (4.51) imply that the

reconstructed {g} does indeed satisfy the D-flux

(b)

(©

conservation condition if it is specified using the
second SGVR procedure described above.
We have

I(P'Q; V) =1(Q'P; V") =D(PQ; V") (4.52)
if (i) P and Q are two neighboring original grid points,
(if) P' and Q' are two neighboring reconstructed grid
points, (iii)

x(P) = x(P") < x(Q) = x(Q) (4.53)

and (iv) g(P') and g(Q’) are specified using the second
SGVR procedure. On the other hand, generally
I(P'Q V") # I(Q' P V™) (4.54)
if g(P") and g(Q') are specified using the first SGVR
procedure. In this sense the second procedure is less
“discriminating” than the first procedure. Generally,
the numerical results obtained using the second
procedure is also slightly less accurate than those
obtained using the first procedure. However, the
second procedure is more robust and, as will be
shown, easier to be extended for multidimensional
applications.
Based on numerical evidence, it appears that
incorporation of the current SGVR procedure into
the 1D basic LTS procedure described in Section 3
does not have a negative impact on the stability of the
latter procedure. It is expected that the same
conclusion is also valid in 2D and 3D cases (the 2D
and 3D SGVR procedures are the topics to be
discussed below).

Based on the background information provided in
Section 3 regarding the 2D and 3D CESE solvers,

(a)

multidimensional extensions of the above second SGVR
procedure are discussed in the following remarks:

Consider a case where two triangle-based 2D spatial
grids (referred to as the “original” and “recon-
structed” grids, respectively) be given at r = t". Let
the original (reconstructed) grid be divided into
different spatial LTS grid zones which are the top
(bottom) faces of various space-time LTS grid zones.
As explained in Section 3, for either of these grids, the
spatial domain at r = ¢" is filled by the quadrilaterals
which are the spatial projections of the BCEs.
In addition, a triple of neighboring quadrilaterals
always meets at a common vertex and fills the spatial
domain surrounding this vertex. Moreover, the
number of the independent solution points that
share the same spatial location and are associated
with the common vertex is equal to the number of
different spatial LTS grid zones converge at this
vertex. In the following, it will be explained how the
reconstructed grid values can be determined in terms
of the known original grid values without violating
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(©)

(d)

(e)
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the D-flux conservation condition over the time level
t=1t".

Let (j,k,n) denote a solution point lying in the
interior of a reconstructed spatial LTS grid zone. Then
the unknowns U, (ux)j’?k, and (uy);’k can be determined
in terms of the original grid values by assuming that,
over each of the three quadrilaterals associated with
(J, k,n), the I-flux evaluated using the three unknowns
is equal to the D-flux evaluated using the original grid
values (how this D-flux is evaluated will be explained
later). These conditions are essentially extensions of
the conditions such as equations (4.38) and (4.39).
Note that: (i) for a reconstructed solution point where
two or more different LTS grid zones meet, the grid
values may be determined using a combination of
finite-difference and D-flux conservation con-
ditions—essentially extensions of the conditions
such as equations (4.23) and (4.40); and (ii) as will
be shown immediately, the D-flux over a recon-
structed quadrilateral is evaluated in terms of the
original grid values using a rule that is essentially an
extension of equation (4.6).

Each quadrilateral referred earlier is the common
subset of the SEs of two neighboring solution points
(Wang and Chang 1999a, Zhang et al. 2002). Let
these two solution points be referred to as the cohosts
of the quadrilateral. Then the D-flux over any subset
of an original quadrilateral is defined to be the simple
average of the I-fluxes evaluated using the grid values
of the co-hosts of the quadrilateral. Moreover, the
D-flux over a given reconstructed quadrilateral is
defined to be the sum of a set of component
D-fluxes—each component represents the D-flux
over the nonnull intersection of the reconstructed
quadrilateral and one of the original quadrilaterals,
and is evaluated in terms of the grid values of the co-
hosts of the original quadrilateral that contains the
intersection.

Consider a case where quadrilateral-based original
and reconstructed 2D spatial grids are given at t = t".
Let (j,k,n) denote a solution point lying in the
interior of a reconstructed spatial LTS grid zone.
Then, for (j,k,n), the number of the associated
quadrilaterals (which is four) is greater than that of
associated unknowns (which is three). Because the
three unknowns generally become over-determined if
a flux condition is imposed over each of the four
quadrilaterals, the recipe described above in item (a)
obviously cannot be used here to evaluate the three
unknowns. However, as will be shown, these
unknowns can be determined using an alternative
based on the least square method.

Let (i) the values of the three unknowns be denoted by
01, U2, and v3, respectively; (ii) the four quadrilaterals
be denoted by Q(1),0(2),0(3), and Q(4), respect-
ively; (iii) the I-flux over Q(j) evaluated using v, v5,
and v3 be denoted by f;; and (iv) the D-flux over Q( )
evaluated using the known original grid values be

denoted by d;. Then (Zhang et al. 2002)
3
£i= g, j=12,34 (4.55)
k=1

where gj are known geometry-related coefficients.
Let v (k = 1,2, 3) be such that

4
S@i,v2,03) = > (fj — &) (4.56)

J=1

is at its minimum, i.e.

aS
—=0, i=1,2,3 (4.57)
a‘Z)i
Then, with the aid of equation (4.55), one concludes
that
3
> hive = b; (4.58)
k=1
where
4 4
hio = gigi and b = dig;i,
j=1 j=1 (4.59)
i,k=1,2,3

Thus ox(k =1,2,3) can be determined using
equation (4.58) if the square matrix formed by
hi(i,k = 1,2,3) is nonsingular. As a result of its
definition, the aforementioned matrix is symetric and
nonsingular if the three columns of of the 4 X 3
matrices formed by gy (j = 1,2,3,4) and k = 1,2, 3)
are linearly independent (Strang 1988).

(f) For a standard 3D CESE solver with a tetrahedron-
based spatial grid, (i) the number of BCEs and the
number of the unknowns associated with an interior
solution point are identical (both are four), and (ii) the
spatial projection of each BCE is a hexahedron with
five vertices. Thus, for this case, a 3D reconstruction
procedure can be built using a set of recipes similar to
those described in item (a).

(g) On the other hand, for a 3D CESE solver with a
hexahedron-based spatial grid, (i) there are six BCEs
and four unknowns associated with an interior
solution point, and (ii) the spatial projection of each
BCE is an octahedron with six vertices. Thus, for this
case, a 3D reconstruction procedure can be built using
a set of recipes similar to those given in item (b).

5. Numerical experiments

A series of numerical experiments has been conducted to
examine the capability and robustness of the LTS and SGVR
procedures described in Sections 3 and 4, respectively.
Note that: (i) in the first numerical example involving
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equation (2.1), the left boundary values are specified using
the given left boundary data while the right boundary values
are evaluated using equation (3.23); (ii) in other numerical
examples involving systems of 1D conservation laws, the
boundary values of each conservative variable are specified
using the non-reflecting boundary conditions in the form of
equation (3.24); (iii) the first SGVR procedure described in
Section 4 or its extensions for systems of 1D conservation
laws is used in each of numerical examples to be considered;
and (iv) without exception, the numerical solutions to be
presented are obtained assuming that o =1 in the a-«
scheme or its extensions.

The first example involves a numerical solution to
equation (2.1) with @ = 1. The exact solution is assumed
to be

u= %exp[—lOO(x —t—0.3)]

It represents a Guassian pulse moving in the x direction
with the constant speed of unit. As such, (i) the initial and
left boundary values needed for numerical solution are
evaluated using equation (5.1); and (ii) the Guassian peak
is located at x = r 4 0.3 at any time ¢, i.e. it is located at
x=0.3 when r = 0.

To obtain the numerical solution, a uniform space-
time coarse grid with Ax = 0.01 and Ar = 0.009 (i.e. the
CFL number = 0.9) is first applied to cover the whole
computational domain. A uniform fine-grid zone with
R=10 and a fixed spatial length of 0.22 is then
introduced to enhance the resolution near the peak. The
left boundary of the fine-grid zone is placed at x = 0.2
when ¢ = 0. It moves in the positive x direction every
two or three coarse time intervals so that the Guassian
peak and the mean spatial location of the fine-grid zone
are kept within a spatial distance of 0.01. The exact and
numerical solutions (denoted by a solid line and dots,
respectively) along with the spatial grid distribution at
t = 0.9 are depicted in figure 8. Not only the numerical
solution agrees very well with the exact solution
throughout the entire domain, the numerical data also
matches smoothly across the two interfaces separating
the fine- and coarse-grid zones.

Also noted are: (i) according to equation (5.1), at
t=0.9,u=5.6418 atx = 1.1995 and x = 1.2005 (i.e. the
two fine grid locations closest to the location x = 1.2
where the peak value of the Guassian pulse occurs); and
(ii) on the other hand, according to the numerical solution,
u = 5.6416 at the same two locations. The numerical error
is less than 0.004%.

In the second example, the Sod shock tube problem
(Chang 1995) is solved using the Euler version of the dual
a-a scheme along with the present LTS-SGVR procedure.
The specific-heat ratio y is 1.4 and the spatial domain is
[—0.5,0.5]. The initial conditions are: (p, v,p) = (1,0, 1)
if x < 0and (p, v, p) = (0.125,0,0.1) if x > 0, where p, v
and p denote the normalized density, velocity and
pressure, respectively. The underlying coarse grid with

5.1

Ax = 4 x 1073 covers the entire spatial domain, while the
fine-grid zone of a fixed spatial length covers the region
[—0.05,0.05] at r=0 and moves with the shock
thereafter. The time-step size At is 1.5 X 1073 (i.e. the
CFL number =~ 0.82) and the grid refinement ratio R = 4.
The overall flow distributions at + = 0.195 are shown in
figure 9a. A close-up view covering the neighborhood of
the fine-grid zone is presented in figure 9b (the dots
represent grid solutions). The shock is well resolved.
No numerical oscillation is observed even though the fine-
grid zone moves with the shock after + = 0. Extensive
calculations have also been carried out for a wide range of
the values of R. Results all indicate sharp, smooth
transient at grid interfaces, even for a high refinement ratio
of R = 64.

The third example deals with detonation propagation in
a one-dimensional tube using an extended dual a-«
scheme (Wu et al. 2004). The chemical kinetics scheme
involves a one-step, irreversible, Arrhenius-type reaction
for two species (i.e. reactant and product),

Reactant(R) = Product(P) + heat release(q) (5.2)

The mass production rate of the reactant per unit
volume is

wR = _pYRAf exp(—Tf/T) (53)
where A; and T are the pre-exponential factor and the
activation temperature, respectively. Their values
and other parameters adopted in the calculations are y =
1.25, MW = 15kg/kmol, g =6.79 X 10°J/kg, A; =
7.5 X 10°1/s, Ty = 15000 K, where MW stands for the
molecular weight.

Figure 10 shows the computational domain and initial
conditions. The tube spans a length of 20 cm with a closed
head end and an open exit. Initially, the reactant at 1 atm
and 300K fills up the tube. A small energetic region with
p =30atm and T = 3000K is placed at the head end to
initiate detonation. Two uniform spatial grids are used in
the calculations. One is the underlying coarse grid that
covers the entire computational domain, and the other is a
fine grid that has a fixed length of 3 cm and travels with the

¢ [ dorted line: numerical selution
[ solid line: exact solution
4r
u [
20
0 . -
[ spatial grid
n i 1 L 1 1 i 1 n 1 1 L L L
0 0.5 1 1.5

X

Figure 8. Exact and numerical solutions along with grid distribution at
t = 0.9 for the case of scalar wave propagation (R = 10).
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Figure 9. Numerical solution to Sod’s shock problem at = 0.195
(R =4), (a) distributions of pressure, density, and velocity in entire
domain, (b) close-up view near the shock.

detonation wave to enhance the resolution of the wave
front. The number of the grid points of the coarse grid is
fixed to 2001 (i.e. Ax = 0.01 cm) for all the simulations.
The number of the grid points of the fine grid is
determined by the refinement ratio R.

A series of simulations has been carried out with
R=1,2,4, and 8. Different from the previous two
examples in which the temporal intervals on the coarse
grids are fixed, the CFL numbers based on the coarse
grid size are taken to be 0.9, 0.6, 0.6 and 0.45 for these
grid refinement ratios, respectively. Table 1 summerizes
the numerical predictions of the characteristic proper-
ties of the flow with various R’s. Also included in the
table are their theoretical counterparts calculated based
on the the Zeldovich, von Neumann and Déring (ZND)
theory (Wu 2002, Wu et al. 2004). The calculated von

i detonation initiation section (at 30 atm and 3000 K)

reactant at 1 atm and 300 K

x=00.2 20 (cm)

Figure 10. Initial conditions used in the case of detonation propagation.

Table 1. Comparison of numerical results for different mesh refinement
ratio R’s with theoretical counterparts for the case of detonation
propagation.

R upm/s psatm Py atm Ty K pratm
1 2849 27.0 22.1 3743 8.06
2 2850 29.0 22.1 3743 8.06
4 2850 32.2 22.1 3743 8.06
8 2850 36.0 22.1 3743 8.06
Theoretical value 2837 429 22.0 3736 8.05

Neumann spike pressure, p,, approaches the theoretical
value with increasing R. The detonation wave velocity
up, the pressure pc; and temperature Ty at the
Chapman—Jouguet state, and the pressure at the head
end p, are well predicted with all R’s. It is worth
mentioning that the deviation of the calculated p,; from
the theoretical prediction results from the assumptions
employed in the ZND theory that an inert shock
exists in the detonation wave front, and that the
flow properties are uniformly distributed immediately
downstream of the shock. These assumptions apparently
do not reflect the actual flow evolution predicted by the
numerical calculation, in which flow continuously
expands downstream of the shock and chemical
reactions start to occur during this process. The
calculated p,; based on a finite-rate chemcial kinetics
model tends to be lower than that predicted by the ZND
theory.

All the numerical schemes, including the space-time
CE/SE method, must introduce more or less artificial
dissipation to suppress numerical oscillations near steep
gradients in flowfields. For the present detonation
problem, the a-a scheme has been used with « =1 in
all the calculations. As a consequence, numerical
dissipation is introduced near the detonation wave front,
leading to a smeared wave front. Since numerical
dissipation decreases with increasing grid resolution, the
numerically predicted von Neumann pressure spike
increases with R. In comparison, the detonation wave
speed up and the CJ state are only functions of the total
heat release with fixed gas properties, and the pressure
at the chamber head end p, depends only on pcj.

40r 2300

p, atm

15 20

Figure 11. Snapshot of pressure and velocity distributions at 45 s
for the case of detonation propagation (R = 8).



380 S.-C. Chang et al.

These values are not affected by the von Neumann
pressure spike and, therefore, can be accurately predicted
even with a simple coarse mesh.

To further examine the performance of the LTS
procedure developed in the present work, the snapshot of
the pressure and velocity fields at = 45.4 s for the case
of R = 8 is plotted in figure 11. The left coarse/fine grid
interface is located at 10.33cm at this instant time.
No numerical oscillations exist at any place in the domain
even after the fine grid has moved over a long distance
from its initial position at the chamber head-end. The LTS
procedure developed herein is indeed capable of
providing accurate solutions across coarse/fine grid
interfaces.

6. Conclusions

A new local time-stepping procedure within the
framework of the space-time CESE method has been
established. The scheme is compatible with unstructured
spatial grids and capable of treating one- and multi-
dimenisonal problems. With the aid of spatial grid value
reconstruction, the present time stepping procedure is
applicable to situations requiring that fine grid zones be
moved with time. Moreover, by taking advantage of
several key features of the CESE method, flux
conservation across an interface separating grid zones
of different time-step sizes is enforced in a much
simpler and more efficient manner compared with
existing approaches. Thus, even without using any
correction pass, no spurious reflections originated from
such an interface are observed in the numerical
experiments presented herein. For a variety of flow
problems involving moving shock and flame disconti-
nuities, accurate and robust numerical simulations can
be carried out even with a reduction in time-step size on
the order of 10 or higher.
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