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An efficient preconditioning scheme for real-fluid mixtures
using primitive pressure–temperature variables
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An improved preconditioning scheme incorporating a unified treatment of general fluid
thermodynamics is developed for treating fluid flows over the entire regime of fluid thermodynamic
states at all speeds. All of the thermodynamic and numerical properties (such as eigenvalues and
Jacobian matrices) are derived directly from fundamental thermodynamics theories, rendering a self-
consistent and robust algorithm. Further efficiency is obtained by employing temperature instead of
enthalpy as the primary dependent variable in the preconditioned energy equation. No iterative solution
of a real-fluid equation of state is required. This approach, combined with the use of explicit treatments
of temporal and spatial derivatives, results in a scheme for which load balance is much easier to achieve
in a distributed computing environment. A numerical stability analysis is performed to assess the
effectiveness of the scheme at various fluid thermodynamic states. Sample calculations are also carried
out. These include injection and mixing of cryogenic fluids and flame dynamics of coaxial jets of liquid
oxygen and methane under supercritical conditions. The robustness and efficiency of the present work
are demonstrated over a wide range of thermodynamic and flow conditions.

Keywords: Real-fluid thermodynamics; Supercritical fluid transport; All-speed fluid flow; Precondi-
tioning method; General fluids

1. Introduction

The development of an efficient numerical algorithm

capable of handling fluid flows over a broad range of

thermodynamic states is of particular importance for many

scientific and engineering problems. Notable examples

include fluid transport, material processing, and combus-

tion at high pressures. Thermodynamic non-idealities and

transport anomalies often occur under these conditions,

especially during the transition from a subcritical to a

supercritical state (Yang 2000). Thus, treating fluid state

transition and thermophysical-property variations in a

manner consistent with the intrinsic characteristics of a

numerical algorithm is critical to achieving numerical

efficiency and robustness.

Several attempts have been made to treat fluid flows at

different thermodynamic states. Merkle et al. (1998)

extended a preconditioning scheme for ideal gases (Turkel

1987, Choi and Merkle 1993, Shuen et al. 1993, Weiss and

Smith 1995, Darmofal and Van Leer 1998, Turkel 1999)

to accommodate arbitrary equations of state. The resultant

scheme, along with the use of the Soave–Redlich–Kwong

equation of state, has been employed to simulate

supercritical hydrogen flow through a two-dimensional

cascade and a heated rectangular duct. Although

encouraging results were obtained for the specific

problems considered, no information was given about

the evaluation of thermophysical properties. The relation-

ship between numerical properties and general fluid

thermodynamics was not addressed.

Edwards et al. (2000) considered real-fluid flows with

liquid–vapour phase transition using a low-diffusion flux-

splitting scheme (Edwards and Liou 1998). The fluid

p–v–T behaviour in the liquid phase was modelled with

the Sanchez–Lacombe equation of state. A homogeneous

vapour–liquid phase equilibrium model was employed to

study the vapour cavitation during liquid carbon dioxide

expansion through a sharp-orifice nozzle. Numerical

experiments demonstrated the effectiveness of the method

in capturing several important two-phase flow pheno-

mena, such as cavitation bubbles and vapour–liquid

condensation shocks. The scheme was later extended to

investigate gas–solid two-phase flows in fluidized beds

under different flow conditions (Mao et al. 2003).
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Oefelein and Yang (1998) extended the preconditioning

methodology described in Hsieh and Yang (1997) to

handle multi-component, dense-fluid mixtures with finite-

rate chemical kinetics at supercritical pressures. Tem-

porally accurate solutions were obtained through the

implementation of a dual-time-stepping integration

technique, in which the primitive variables of pressure,

velocity components, temperature, and mass fraction were

chosen as the dependent variables in pseudo-time. The

Soave–Redlich–Kwong equation of state was employed

to predict the fluid volumetric behaviour except in regions

near the critical point, for which the Benedict–Webb–

Rubin equation of state was used. Thermodynamic

properties, such as the enthalpy, Gibbs energy, and

specific heat, were obtained as explicit functions of

temperature and pressure by using Maxwell’s relations to

derive thermodynamic departure functions (Yang 2000).

Transport properties were estimated using an extended

corresponding-state principle. The combined theoretical/

numerical framework was applied to study the mixing and

combustion of cryogenic propellants in supercritical

environments (Oefelein and Yang 1998, Oefelein 2006).

The properties of fluid mixtures (i.e. enthalpy and internal

energy) in their analysis, however, were evaluated with the

formulas for an ideal gas mixture, taking as the mass-

weighted sum of the values of constituent species without

considering their interactions. Since the coupling between

molecules of different species may be significant in real-

fluids, such a simplification leads to inconsistency with

real-fluid equations of state and other property evaluation

schemes.

To remedy this deficiency, Meng and Yang (2003)

developed a unified numerical treatment of general fluid

thermodynamics. The concepts of partial-mass and

partial-density were introduced to evaluate the properties

of real-fluid mixtures. All of the thermodynamic proper-

ties and numerical relations, including the Jacobian

matrices and eigenvalues, were derived directly from

fundamental thermodynamics theories, rendering a self-

consistent and robust algorithm valid over the entire range

of fluid states. Furthermore, full account is taken of

transport property variations as functions of fluid density,

temperature, and composition. The resultant numerical

properties and property evaluation routines were incor-

porated into a preconditioning scheme (Hsieh and Yang

1997) to handle fluid flows at all speeds. The overall

approach is general and can accommodate any type of

equation of state.

In spite of its effectiveness in treating real-fluid flows

with thermodynamic non-idealities and transport

anomalies (Meng and Yang 2003, Meng et al. 2005), the

aforementioned formulation cannot, in general, be solved

in a non-iterative manner because the specific enthalpy is

used as one of the dependent variables in the formulation

of the pseudo-time derivatives. Extensive iterations at

each time step and grid point are required to determine the

fluid temperature from the specific enthalpy. Although

such iterations are straightforward to handle for an ideal

gas mixture, the procedure becomes quite complicated and

time-consuming for real-fluid mixtures due to the

complicated form of the equation of state and property

evaluation schemes. The iterative solution of a real-fluid

equation of state not only significantly increases the

computational cost, but also impairs the scalability of a

parallelized code.

The purpose of the present work is to circumvent this

limitation by replacing specific enthalpy with temperature

as a primary dependent variable in the numerical

formulation. Such an employment of the pressure–

temperature type of primitive variables has been made in

many existing approaches (Turkel 1987, Choi and Merkle

1993, Shuen et al. 1993, Weiss and Smith 1995, Darmofal

and Van Leer 1998, Turkel 1999) and offers the following

advantageous. First, laborious iterations in calculating

temperature from specific enthalpy or internal energy are

avoided, rendering a highly efficient algorithm for real-

fluid mixtures. Second, load balance is easier to achieve

on a distributed computing facility, since no iterative

solution of the equation of state is required. The

computation burden at each spatial grid point is the

same. Third, computation of numerical Jacobian matrices

is simplified, especially within the context of the general

fluid thermodynamics. In addition, the preconditioning

matrix in this study is derived by analysing the

eigenvalues of the governing system. All the off-diagonal

terms in the Jacobian matrix relating the conservative to

preconditioning variables are retained. The original

governing equations can thus be fully recovered for

high-speed flows in a steady state simulation. The scheme

is further optimized to facilitate parallel computation by

treating the pseudo-time and spatial derivatives using a

fourth-order Runge-Kutta (RK4) scheme (Jameson 1983)

and an explicit fourth-order flux-differencing scheme (Rai

and Chakravarthy 1993), respectively. Because the time

advancement is fully explicit in the pseudo-time space, the

approach not only guarantees high-order numerical

accuracy in both time and space, but also simplifies the

implementation of a parallelized code.

The remainder of this paper is organized as follows. In

Section 2, we briefly summarize the theoretical frame-

work, including the governing equations and basic

thermodynamics theories for general fluid mixtures.

Fundamental thermodynamic and numerical attributes

are established. Section 3 deals with the numerical

implementation of the present scheme. A stability analysis

is carried out in Section 4 to characterize the stability and

convergence behaviour of the algorithm. Section 5

presents results from selected numerical experiments,

along with an assessment of the computational efficiency.

Finally, a brief summary concludes the work.

2. Theoretical formulation

To facilitate discussion, we consider the two-dimensional

conservation equations of mass, momentum, energy, and

N. Zong and V. Yang218
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species transport for a chemically reacting system of N

species. Following the approach detailed in Shuen et al.

(1993) and Weiss and Smith (1995) for developing a

preconditioning scheme for fluid flows at all speeds, a

pseudo-time derivative of the form G›Q̂=›t is added to the

conservation equations,

G
›Q̂

›t
þ

›Q

›t
þ

›ðE2 EvÞ

›x
þ

›ðF 2 FvÞ

›y
¼ S ð2:1Þ

where G represents the preconditioning matrix and t the

pseudo-time. The conservative variable vector, Q, is

defined as,

Q ¼ y d½r ru rv ret rYi�
T: ð2:2Þ

The exponent d ¼ 0 or 1 corresponds to a planar two-

dimensional or an axisymmetric case, respectively.

Standard notations in fluid mechanics are used here,

with r, (u, v), et, and Yi denoting the density, velocity

components, specific total energy, and mass fraction of

species i, respectively. Explicit expressions of the

convective flux vectors, E and F and the diffusion flux

vectors, Ev and Fv, are given in Hsieh (1997), Meng and

Yang (2003), Oefelein (2006). The source term in

equation (2.1), S, arises from chemical reactions or

axisymmetric geometry (Hsieh 1997).

Because the pseudo-time derivative in equation (2.1)

vanishes at convergence, a certain amount of liberty

can be taken in the selection of the pseudo-time

variables (Turkel 1999). Different options have been

proposed for the primary dependent variables in the

preconditioning scheme for ideal gases. Those include

conservative and several sets of primitive (e.g.

pressure–entropy, pressure–enthalpy, and pressure–

temperature) variables (Turkel 1999). The influences

of selected preconditioning variables on the numerical

convergence and accuracy for low Mach number

aerodynamic problems were examined by Turkel

(2002), Turkel and Vatsa (2003). Results indicated

that the pressure– temperature type of primitive

variables, which has long been a favourable choice

by many researchers, led to fast convergence for

simulating steady state flows. The present study follows

the same approach, and the pseudo-time variable vector,

Q̂, is thus defined as

Q̂ ¼ ½pg; u; v; T; Yi�: ð2:3Þ

The use of the gauge pressure, pg, taken as the static

pressure subtracted by a reference pressure (Shuen et al.

1993, Hsieh and Yang 1997), is crucial for two

reasons. First, it allows the vectors E, F, Ev, Fv, and S

to be expressed as unique functions of Q̂ (Hsieh and

Yang 1997). Second, pg is much more sensitive to the

solution than the density at low Mach numbers, and

thus provides a stronger velocity–pressure coupling in

the momentum balance. The selection of the velocity

components (u, v), temperature, T, and species mass

fraction, Yi, helps maintain the direction of the

diffusion process, simplifies the structures of viscous

vectors, and reduces the computational complexity

(Choi and Merkle 1993). In contrast to the schemes

with the pressure–enthalpy type of primitive variables,

all the thermodynamic properties of pressure, tempera-

ture, and mass fraction are directly solved, thereby

eliminating tedious iterative solutions of the equations

of state.

2.1 Thermodynamic relations

To develop a robust numerical scheme in a manner

consistent with real-fluid thermodynamics, all the

numerical properties and relations, including the

preconditioning matrix, Jacobian matrices and system

eigenvalues, must be derived in accordance with

fundamental thermodynamics theories described by

Meng and Yang (2003). The procedure should conform

to the concepts of partial-mass and partial-density

properties for fluid mixtures, along with the use of an

appropriate equation of state.

Four thermodynamic relationships beyond those

established in Meng and Yang (2003) are needed to

derive the numerical properties. Those equations define

density, enthalpy, and internal energy as functions of such

dependent variables as pressure, temperature, and mass

fraction, and consequently can be used to determine the

Jacobian matrices T ; ›Q=›Q̂, A ; ›E=›Q̂, B ; ›F=›Q̂
and D ; ›S=›Q̂ (see Appendix A), as well as the

associated eigen-properties.

2.1.1 Pressure as function of density, temperature, and

mass fraction. The first relationship expresses pressure as

a function of temperature, density, and mass fractions. For

a general fluid mixture consisting of N species, each

intensive thermodynamic property can be determined by

the other N þ 1 properties of the mixture. This leads to the

following expression:

p ¼ pðT; riÞ ð2:4Þ

where i ¼ 1, . . . , N. The differential form of equation

(2.4) is

dp ¼
›p

›T

� �
ri

dT þ
XN
i¼1

›p

›ri

� �
T ;rj–i

dri: ð2:5Þ

We may change the summation on the right-hand side of

equation (2.5) from 1 through N to 1 through N 2 1

Preconditioning scheme for real-fluid mixtures 219
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to obtain the following relation:

dp ¼
›p

›T

� �
ri

dT

þ
XN21

i¼1

›p

›ri

� �
T ;rj–i

2
›p

›rN

� �
T ;rj–N

" #
dri

þ
›p

›rN

� �
T ;rj–N

dr: ð2:6Þ

Since ri ¼ rYi,

dri ¼ Yidrþ rdYi ð2:7Þ

substitution of equation (2.7) into equation (2.6) yields

dp ¼ ATdT þ AYi
dYi þ Ardr ð2:8Þ

where

AT ¼
›p

›T

� �
ri

ð2:9aÞ

AYi
¼ r

›p

›ri

� �
T ;rj–i

2
›p

›rN

� �
T ;rj–N

" #
ð2:9bÞ

Ar ¼
›p

›r

� �
T ;Yi

: ð2:9cÞ

It has been shown in Meng and Yang (2003) that the

speed of sound for a general fluid mixture can be

expressed as

a2 ¼
›p

›r

� �
s;Yi

¼
Cp

Cv

›p

›r

� �
T ;Yi

¼ gAr ð2:10Þ

where Cp and Cv are constant-pressure and constant-

volume specific heats, respectively, and g is the ratio of

specific heat.

2.1.2 Internal energy as function of temperature,

pressure, and mass fraction. The second relationship

expresses internal energy as a function of pressure,

density, and mass fractions. We begin with the following

functional relationship:

re ¼ reðT ; riÞ ð2:11Þ

where i ¼ 1, . . . , N and e the specific internal energy. The

differential form of equation (2.11) can be written as

dre ¼ r
›e

›T

� �
ri

dT þ
XN
i¼1

›re

›ri

� �
T ;rj–i

dri: ð2:12Þ

The derivative in the first term on the right-hand side is the

constant-volume heat capacity, Cv, and that in the second

term is the partial-density internal energy, ~ei (Meng and

Yang 2003),

~ei ¼
›re

›ri

� �
T ;rj–i

ð2:13Þ

equation (2.12) thus becomes

dre ¼ rCvdT þ
XN
i¼1

~ei dri: ð2:14Þ

Substitution of equation (2.7) into equation (2.14) gives

dre ¼ rCv dT þ
XN
i¼1

~eir dYi þ
XN
i¼1

~eiYidr: ð2:15Þ

Since dre ¼ r deþ e dr, a simple manipulation of

equation (2.15) results in

de ¼ CvdT þ
XN21

i¼1

ð~ei 2 ~eNÞdYi

þ
1

r

XN
i¼1

Y ~ei 2 e

 !
dr: ð2:16Þ

Substitution of equation (2.8) into the above equation

leads to

de ¼ BT dT þ Bp dpþ
XN21

i¼1

BYi
dYi ð2:17Þ

where

BT ¼ Cv 2
1

r

XN
i¼1

Yi ~ei 2 e

 !
›r

›p

� �
T ;Yi

›p

›T

� �
ri

ð2:18aÞ

Bp ¼
1

r

XN
i¼1

Yi ~ei 2 e

 !
›r

›p

� �
T ;Yi

ð2:18bÞ

BYi
¼ ð~ei 2 ~eNÞ2

XN
i¼1

Yi ~ei 2 e

 !
›r

›p

� �
T ;Yi

(

�
›p

›ri

� �
T ;rj–i

2
›p

›rN

� �
T ;rj–N

" #)
: ð2:18cÞ

2.1.3 Enthalpy as function of temperature, pressure,

and mass fraction. The third relationship expresses

enthalpy as a function of pressure, temperature, and mass

fractions. According to basic thermodynamic definitions,

N. Zong and V. Yang220
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we have

dh ¼ deþ
1

r
dp2

p

r2
dr: ð2:19Þ

Substituting equations (2.8) and (2.17) into equation

(2.19) and following some straightforward manipulations,

we obtain

dh ¼ DT dT þ Dp dpþ
XN21

i¼1

DYi
dYi ð2:20Þ

where

DT ¼ Cv

2
1

r

›p

›T

� �
ri

›r

›p

� �
T ;Yi

XN
i¼1

Yi ~ei 2 e2
p

r

 !

ð2:21aÞ

Dp ¼
1

r
þ

1

r

›r

›p

� �
T ;Yi

XN
i¼1

Yi ~ei 2 e2
p

r

 !
ð2:21bÞ

DYi
¼ ~ei 2 ~eN 2

›r

›p

� �
T ;Yi

XN
i¼1

Yi ~ei 2 e2
p

r

 !

�
›p

›ri

� �
T ;rj–i

2
›p

›rN

� �
T ;rj–N

" #
: ð2:21cÞ

The coefficient, DT, is equivalent to the constant-pressure

heat capacity, Cp, of a fluid mixture, according to its

definition. Thus,

Cp ¼DT ¼Cv 2
1

r

›p

›T

� �
ri

›r

›p

� �
T ;Yi

XN
i¼1

Yi ~ei2 e2
p

r

 !
:

ð2:22Þ

2.1.4 Relationship between constant-pressure and

constant-volume specific heats. The final relationship

deals with constant-pressure and constant-volume specific

heats. According to fundamental thermodynamics for a

multi-component mixture,

s ¼ sðT ; r; YiÞ i ¼ 1; . . . ;N 2 1: ð2:23Þ

Its differential form can be written as

ds¼
Cv

T
dTþ

›s

›r

� �
T ;Yi

drþ
XN21

i¼1

›s

›Yi

� �
T ;r;Yj–i

dYi: ð2:24Þ

A similar relationship that defines entropy as a function of

temperature, pressure, and mass fraction can be easily

derived as

ds¼
Cp

T
dTþ

›s

›p

� �
T ;Yi

dpþ
XN21

i¼1

›s

›Yi

� �
T ;p;Yj–i

dYi: ð2:25Þ

Combination of equations (2.24) and (2.25) and

rearrangement of the result lead to

Cp

T
2
Cv

T

� �
dT¼

›s

›r

� �
T ;Yi

dr2
›s

›p

� �
T ;Yi

dp

þ
XN21

i¼1

›s

›Yi

� �
T ;r;Yj–i

2
›s

›Yi

� �
T ;p;Yj–i

" #
dYi:

ð2:26Þ

Substitution of equation (2.8) into equation (2.26) and

elimination of dp give,

Cp

T
2

Cv

T
þ

›s

›p

� �
T ;Yi

›p

›T

� �
T ;Yi

" #
dT

¼
›s

›r

� �
T ;Yi

2
›s

›p

� �
T ;Yi

›p

›r

� �
T ;Yi

" #
dr

þ
XN21

i¼1

›s

›Yi

� �
T ;r;Yj–i

2
›s

›Yi

� �
T ;p;Yj–i

"

2
›s

›p

� �
T ;Yi

›p

›Yi

� �
T ;Yj–i

#
dYi:

ð2:27Þ

Since temperature, density, and mass fraction can vary

independently, the coefficients of the above differentials

must vanish. Thus,

Cp ¼ Cv 2 T
›s

›p

� �
T ;Yi

›p

›T

� �
r;Yi

: ð2:28Þ

Application of the well-known Maxwell relation (Moran

and Shapiro 1999),

›s

›p

� �
T ;Yi

¼
1

r2

›r

›T

� �
p;Yi

¼
2 1

r 2

›p
›T

� �
r;Yi

›p
›r

� �
T ;Yi

ð2:29Þ

gives,

Cp ¼ Cv þ
T

r2

›p
›T

� �2

ri

›p
›r

� �
T ;Yi

: ð2:30Þ

This relationship will be employed to calculate the

eigenvalues of the preconditioned governing system.

Preconditioning scheme for real-fluid mixtures 221
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2.2 Preconditioning matrix

The precondition matrix G in equation (2.1) is introduced

to rescale the system eigenvalues in such a manner that

they have the same order of magnitude to ensure uniform

convergence at all Mach numbers. The specific form of the

matrix is not unique (Turkel 1999), and is selected to

maximize the numerical efficiency over a broad range of

flow conditions. Generally, this matrix can be constructed

by means of either an eigenvalue analysis (Turkel 1987,

1999) or an asymptotic theory (Guillard and Viozat 1999,

Venkateswaran et al. 2004).

Following the standard approach suggested in Choi and

Merkle (1993), we examine the Jacobian matrix T ;
›Q=›Q̂ in Appendix A. A common term ð›r=›pÞT ;Yi

,

which can be expressed as

›p

›r

� �
T ;Yi

¼
Cp

Cv

›p

›r

� �
s;Yi

¼
g

a2
ð2:31Þ

is identified in each element of the first column of T. It is

this term, after multiplication of the time derivatives of

dependent variables in equation (2.1), that dictates the

propagation speeds of acoustic waves in the governing

system (Choi and Merkle 1993). The preconditioning

matrix is, then, established by simply replacing this term

with a scaling factor, Q.

G ¼

Q 0 0 2 AT

Ar
2

AY1

Ar
. . . 2

AYN21

Ar

Qu r 0 2 ATu
Ar

2
AY1

u

Ar
. . . 2

AYN21
u

Ar

Qv 0 r 2 ATv
Ar

2
AY1

v

Ar
. . . 2

AYN21
v

Ar

Qht þ
PN

i¼1 Yi ~ei 2 e2 p
r

� �
›r
›p

� �
T ;Yi

ru rv rBT 2 ATet
Ar

rBY1
2

AY1
et

Ar
. . . rBYN21

2
AYN21

et
Ar

QY1 0 0 2 ATY1

Ar
r2

AY1
Y1

Ar
. . . 2

AYN21
Y1

Ar

..

. ..
. ..

. ..
. ..

. . .
. ..

.

QYN21 0 0 2 ATYN21

Ar
2

AY1
YN21

Ar
. . . r2

AYN21
YN21

Ar

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ð2:32Þ

where the two sets of coefficients (AT, Ar, AYi
) and

(BT, BYi
) are defined by equations (2.9) and (2.18),

respectively. The scaling factor, Q, is defined as,

Q ¼ ½1=12 þ ðg2 1Þ�=a2: ð2:33Þ

The preconditioning factor, 1, lies between 0 and 1. In

comparison with the preconditioning matrices defined in

Choi and Merkle (1993), Shuen et al. (1993), Hsieh and

Yang (1997), Meng and Yang (2003), all of the off-diagonal

terms in equation (2.32) are retained. The preconditioning

matrix becomes the Jacobian matrixT ; ›Q=›Q̂ in the limit

of 1 ! 1, and the original governing system is recovered for

high-speed flows in a steady state simulation. For an ideal

gas, the preconditioning matrix, G, reduces to the form

introduced by Weiss and Smith (1995), and becomes a

member of the generalized preconditioner family suggested

by Turkel (1987, 1999). For an incompressible fluid, as the

speed of sound, a, reaches infinite, the preconditioning

matrix takes a form similar to that proposed in Choi and

Merkle (1993). As will be shown later, through an

appropriate selection of the preconditioning factor, 1, the

preconditioning matrix developed herein can effectively

circumvent the eigenvalue-disparity problem associated

with low Mach number flows and help achieve an optimal

convergence rate in the entire flowfield.

According to Choi and Merkle (1993), the precondi-

tioning factor for an inviscid flow is specified as

1inv ¼

1min M # 1min

M 2 1min , M , 1

1 M $ 1:

8>><
>>: ð2:34Þ

A lower bound, 1min, typically taken as 1025, is used to

avoid the singularity of a stagnation point. In regions

where diffusion plays a dominant role in determining the

flow behaviour, it is important to simultaneously control

both the Courant–Friedriches–Lewy (CFL) and von

Neumann (VNN) numbers to achieve efficient conver-

gence (Buelow et al. 1994). Oefelein and Yang (1998)

suggested that the viscous preconditioning factor, 1vis, be

selected as

1vis ¼ max
u2dxðdx 2 1Þ

u2d2
x þ a2

;
v2dyðdy 2 1Þ

v2d2
y þ a2

" #
ð2:35Þ

where

dx ¼ max n;
n

Pr
;
n

Sci

� �
1

u

CFL

VNN

dy ¼ max n;
n

Pr
;
n

Sci

� �
1

v

CFL

VNN

ð2:36Þ

and n, Pr, and Sci are the kinematic viscosity, cell Prandtl

number, and cell Schmidt number of species i, respectively.
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equation (2.36) takes into account the effects of

momentum, energy, and mass diffusion on the overall

convergence rate.

A preconditioning factor that can optimally control both

convection and diffusion processes is determined locally

as

1 ¼ min½1; maxð1inv; 1visÞ�: ð2:37Þ

2.3 System eigenvalues

The basic characteristics of the algorithm developed

herein, specifically, the numerical convergence and

stability properties, can be examined by studying the

system eigenvalues. For brevity, only those eigenvalues

associated with the inviscid flux vector in the axial

direction, G21A with A ; ›E=›Q̂, are discussed.

lA ¼ diagðl1 l2 u u . . . uÞ ð2:38Þ

where l1 and l2 represent the rescaled acoustic wave

speeds propagating upstream and downstream, respect-

ively,

l1;2 ¼
1

2
ðq11 þ uÞ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq11 2 uÞ2 2 4ðuq11 2 1a2Þ

q� 	
:

ð2:39Þ

The variable q11 represents the first element in the first

column of the matrix, G21A.

q11 ¼

u
gCp

a 2 2 T
r 2

A2
T

A2
r

� �
gCp

b
2 T

r 2

A2
T

A2
r

� � ð2:40Þ

where AT and Ar are given in equations (2.9a) and (2.9c),

respectively. We then obtain,

A2
T

A2
r

¼

›p
›T

� �2
ri

›p
›r

� �2
T ;Yi

: ð2:41Þ

Combination of equations (2.41) and (2.30) and

substitution of equation (2.10) into the resultant equation

yield

Cp ¼ Cv þ
T

r2
·
A2
T

A2
r

·
Cv

Cp

a2: ð2:42Þ

The above equation can be rearranged to become

A2
T

A2
r

¼
r2

T

ðg2 1ÞCp

a2
: ð2:43Þ

Incorporation of equation (2.43) into equation (2.40) leads

to

q11 ¼

u
gCp

a 2 2 T
r 2

A2
T

A2
r

� �
gCp

b
2 T

r 2

A2
T

A2
r

� � ¼ 1u: ð2:44Þ

The first two system eigenvalues, l1,2, can thus be

obtained by substituting equation (2.44) into equation

(2.39).

l1;2 ¼
1

2

h
ð1 þ 1Þu^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 1Þ2u2 þ 41a2

q i
: ð2:45Þ

All of the eigenvalues in the pseudo-time space are real,

and have signs consistent with the directions of

characteristic wave propagation. The present scheme not

only preserves the hyperbolicity of the system, but also

gives rise to individual eigenvalues that behave in a

manner representative of the physical reality involved

(Hsieh and Yang 1997). The same conclusion was reached

in Meng and Yang (2003) using different pseudo-time

variables and preconditioning matrix.

3. Numerical implementation

A dual-time-stepping integration technique is

implemented to obtain time-accurate results (Shuen et al.

1993, Hsieh and Yang 1997, Oefelein and Yang 1998,

Meng and Yang 2003). The solution converged in pseudo-

time corresponds to a time-accurate solution in physical

time. One major advantage of this technique lies in the fact

that the convergence of the iterative process is dictated by

the well-behaved eigenvalues in the pseudo-time space,

instead of the original eigenvalues that may become

disparate in certain flow regimes (e.g. low Mach number

flows; Shuen et al. 1993).

A standard fourth-order Runge-Kutta (RK4) scheme

(Jameson 1983) is employed to perform the inner-loop

pseudo-time integration because of its relatively higher

temporal accuracy and greater stability margin compared

to many commonly used explicit schemes. The temporal

discretization of the real-time derivative term is obtained

using a second-order backward difference. Spatial

discretization is achieved by means of a fourth-order

flux-differencing scheme (Rai and Chakravarthy 1993).

Further improvement is acquired by adding both the

second- and fourth-order artificial dissipation with a

total-variation-diminish (TVD) switch (Swanson and

Turkel 1992, Jorgenson and Turkel 1993) to ensure

numerical stability and convergence. The former is

enforced only in regions with strong gradients, whereas

the latter is applied in smooth regimes to achieve

numerical stability. The details about implementation of

artificial dissipation in a preconditioning scheme can be

found in Turkel (1999).
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Because the time advancement is fully explicit in pseudo-

time and only the neighbouring data at the previous time step

is required when evaluating the derivatives of the convective

and viscous terms, the present scheme is suitable for parallel

implementation. The scheme is then parallelized using a

multiblock domain decomposition technique with message

passing interfaces (MPI) at the domain boundaries. The

parallelization methodology is robust and the speedup is

almost linear.

4. Stability analysis

AVNN analysis is performed to characterize the stability

and convergence behaviour of the present scheme. For

simplicity, only the inviscid part without any source terms

is considered, and the coefficient matrices are assumed to

be locally constant. The amplification matrix is obtained

by the Fourier transformation of the discretized governing

equations to the wave-number space. The partial

derivatives of the thermodynamic properties in the

corresponding numerical Jacobian matrices and the fluid

p–v–T behaviour are evaluated with a modified Soave–

Redlich–Kwong equation of state (Graboski and Daubert

1978, 1979).

Figure 1(a) shows the one-dimensional stability

characteristics for an ideal gas in terms of the magnitude

of the largest eigenvalue of the amplification matrix. The

numerical parameters are CFL ¼ 0.7, Dt/Dt ¼ 1, and

1ð4Þx ¼ 1=64, where the latter denotes the coefficient of the

fourth-order artificial dissipation. The result of the RK4

integration combined with the fourth-order central

differencing (4CD) scheme is also included for compari-

son. The amplification factor of the standard RK4–4CD

algorithm approaches unity in the bulk of the wave-

number space, whereas the preconditioning technique

stabilizes numerical calculations over the entire domain at

all Mach numbers.

The effects of fluid state on the numerical stability

behaviour are investigated by considering nitrogen fluid at

a near-critical ( p ¼ 40 atm and T ¼ 120 K), a transcritical

( p ¼ 90 atm and T ¼ 120 K), and a supercritical

( p ¼ 90 atm and T ¼ 185 K), fluid state. Table 1 lists

the thermodynamic critical properties of nitrogen.

The compressibility-factors, Z, which measure the

departure from the ideal gas behaviour, are 0.2, 0.4, and

0.8 at those three different fluid states, respectively. As

evidenced in figure 1(b), the present scheme appears to be

quite robust and exhibits an almost identical stability

behaviour independent of fluid states. The same result is

obtained for all flow Mach numbers.

Two-dimensional stability analyses are also conducted

for an ideal gas, a cryogenic oxygen fluid ( p ¼ 100 atm

and T ¼ 100 K), and a supercritical fluid mixture of

oxygen and methane ( p ¼ 100 atm, T ¼ 200 K and

xO2 ¼ 0.5) at a flow Mach number of 1023 and a flow

angle of 45 deg (i.e. v/u ¼ 1). The compressibility-factors

for the latter two cases are 0.34 and 0.48, respectively. The

amplification factors shown in figure 2 indicate that the

scheme exhibits an identical stability behaviour in a two-

dimensional domain, regardless of the fluid state. The

result further corroborates the numerical uniformity and

self-consistence of the general fluid thermodynamics

treatment (Meng and Yang 2003) implemented herein.

5. Sample calculations

The numerical scheme developed in the preceding

sections has been applied to study a wide variety of flow

problems in order to assess its accuracy, efficiency, and

robustness. This section presents some representative

results, including injection of cryogenic fluids and mixing

and combustion of coaxial oxygen/methane fluid jets

under supercritical conditions. For all the demonstration

cases considered herein, turbulence closure is achieved by

means of a large-eddy-simulation (LES) technique, in

which large-scale motions are calculated explicitly and the

effects of unresolved small-scale turbulence are modelled

either analytically or empirically. The Favre-filtered mass,

momentum, energy, and species conservation equations

are derived by filtering small-scale dynamics from

resolved scales over a well-defined set of spatial and

temporal intervals. The effects of subgrid-scale (sgs)

motions are treated using the model proposed by

Erlebacher et al. (1992). It employs a Favre-averaged

generalization of the Smagorinsky eddy-viscosity model

coupled with a gradient-diffusion assumption to simulate

Figure 1. Amplification factor showing the one-dimensional stability characteristics of the scheme at CFL ¼ 0.95, Dt/Dt ¼ 1, 14 ¼ 1/64, (a) ideal gas
at M ¼ 1023, 1022, 0.1 and 1.25; and (b) compressed nitrogen fluid at M ¼ 0.1 and Z ¼ 0.2, 0.4, 0.8.
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sgs energy and species transport processes. The Smagor-

insky coefficients CR (<0.01) and CI (<0.007) are

determined empirically. Thermodynamic properties, such

as enthalpy, Gibbs energy, and constant-pressure specific

heat, are obtained directly from fundamental thermodyn-

amics theories and a modified Soave–Redlich–Kwong

equation of state (Graboski and Daubert 1978, 1979).

Transport properties, such as viscosity and thermal

conductivity, are evaluated using an extended correspond-

ing-state theory (Ely and Hanley 1981, 1983) along with

the 32-term Benedict–Webb–Robin equation of state

(Jacobsen and Stewart 1973). Mass diffusivity is obtained

by means of the Takahashi (1974) method, calibrated for

high pressure conditions. The implementation and

validation of the property evaluation schemes were

detailed by Yang (2000) and Meng et al. (2005).

5.1 Cryogenic nitrogen fluid jet dynamics

The first case deals with the injection of cryogenic fluids

into supercritical environments. Liquid nitrogen at a

temperature of 120K is injected through a circular tube

with a diameter of 254mm into a supercritical nitrogen

environment. A turbulent pipe flow with a bulk velocity of

15m/s is assumed at the injector exit. The ambient

temperature remains at 300K, but the pressure varies from

69 to 93 atm, which is comparable to the chamber

pressures of many operational rocket engines. Two

different flow conditions summarized in table 2 are

considered, simulating the experiments conducted by

Chehroudi et al. (2002a,b). The subscripts 1 and inj

denote the injection and ambient conditions, respectively.

The Reynolds number is defined as Re ¼ rinjuinjDinj=minj.

The computational domain downstream of the injector

measures a length of 40Dinj and a diameter of 12Dinj. The

dimensions are sufficient to minimize the effect of the far-

field boundary conditions on the near-injector flow

evolution. A three-dimensional grid consisting of

225 £ 90 £ 72 cells is employed. The mean grid size

falls roughly in the inertial sub-range of the turbulent kinetic

energy (TKE) spectrum, estimated using the Kolmogorov–

Obukhow theory. The computational domain is divided into

54 blocks, with each calculated on a single processor of a

distributed-memory parallel computer. The physical time

step is 1 £ 1023 ms and the maximum CFL number for the

inner-loop pseudo-time integration is 0.7. For each case, the

calculation is first conducted for an extended period until

the flowfield reaches its stationary state. The time stamp is

then reset, and data is collected for more than 12 flow

through times (i.e. 15 ms) to obtain statistically meaningful

turbulence properties.

Figure 3 shows snapshots of the density-gradient fields

at two different ambient pressures of 6.9 and 9.3MPa. The

salient features of supercritical fluid jets are well captured.

The fluid state changes continuously from the injected

liquid phase to the warmer ambient gas phase with a series

of finger- or thread-like entities emerging from the jet

surface and dissolving gradually in the surrounding gases.

Strong anisotropy of turbulence occurs close to the jet

interface, where large eddies of integral-length scales

become flattened, and the radial component of the TKE is

transferred to its axial quantity (Zong et al. 2004).

Compared with incompressible turbulent jets, both vortex

roll-up and pairing are delayed, which leads to a longer

potential core, around 8Dinj for Case 1. The influence of

the density stratification decays as the ambient pressure

increases. Thus, the location of vortex roll-up shifts

upstream from x/Dinj < 5 in Case 1 to x/Dinj < 3 in Case

2, and the jet spreads wider and the length of the potential

core reduces to 6 2 7Dinj in the latter case.

Table 1. Critical properties of nitrogen, methane, and oxygen.

pc (atm) Tc (K) vc (L/mol)

Nigrogen 34 126 0.089
Methane 46 190 0.099
Oxygen 50 154 0.076

Figure 2. Amplification factors showing the two-dimensional stability characteristics of the scheme at M ¼ 1023, CFL ¼ 0.95 and Dt/Dt ¼ 1, (a)
ideal gas, Z ¼ 1.0; (b) compressed cryogenic oxygen at 100 K and 100 atm, Z ¼ 0.34; (c) supercritical oxygen/methane mixture at 200 K, 100 atm and

oxygen mole fraction of 0.5, Z ¼ 0.48.

Table 2. Simulation conditions for injection of liquid nitrogen.

p1 (MPa) Tinj (K) T1 (K) rinj (kg/m3) r1 (kg/m3) rinj/r1 uinj (m/s) Minj Re

Case 1 6.9 120 300 603 77 7.83 15 0.031 44,700
Case 2 9.3 120 300 626 103 6.07 15 0.028 42,300
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Figure 4 shows the radial distributions of the normal-

ized mean density, r* ¼ ð �r2 �r1Þ=ð �rc 2 �r1Þ, at different

axial locations. The radial coordinate is normalized by the

full width of the radial profile measured where the fluid

density is one half of its maximum value (FWHM), r1/2, at

the axial position of concern. Three distinct flow regimes,

similar to incompressible turbulent jets, are identified. The

potential core is manifested by the flat-hat distribution

near the injector. The density profiles merge into a single

distribution farther downstream (x/Dinj . 30), which

suggests the existence of a fully developed self-similarity

region. A transition region occurs between 10 and 30Dinj.

The experimental data obtained using the Raman

scattering technique at the test condition of Case 1

(Chehroudi et al. 2002a,b) is also plotted for comparison.

Good agreement between calculations and measurements

is achieved with a maximum deviation of 8%.

5.2 Supercritical mixing and combustion of oxygen and
methane

The second case treats the flow and flame dynamics of a

shear-coaxial injector operating at supercritical conditions,

as shown schematically in figure 5. Co-flowingmethane and

oxygen streams are injected through two concentric tubes.

The innerdiameters of theLiquid oxygen (LOX)post and the

methane annulus are 3.42 and 5.18mm, respectively. Fully

developed turbulent pipe flows are assumed at the injector

exit. In the cold-flow simulations, supercritical oxygen and

methane are injected at temperatures of 200 and 300K,

respectively. The bulk velocities of the two streams are 10

and 30m/s, respectively.

The computational domain extends 40d downstream of

the injector exit with a radius of 12d, where d is the

thickness of the LOX post. A quasi-axisymmetric

simulation involving 360 £ 200 grid points was con-

ducted. The mean grid size of 10mm is sufficient to

resolve the inertial sub-range of the TKE spectrum

estimated based on the inlet Reynolds number of the

oxygen stream. The physical time step is 0.5 £ 1023 ms

and the maximum CFL number for the inner-loop pseudo-

time integration is 0.7. A more detailed description of the

simulation conditions is given in Zong and Yang (2006,

2007).

Figure 6 presents close-up views of the vorticity,

temperature, oxygen mass fraction, and compressibility-

factor fields near the injector without chemical reactions.

Three shear layers are clearly observed: one emerging

from the inner rim of the LOX post; and two from the

inner and outer edges of the methane annulus. A series of

Figure 3. Effect of pressure on the density-gradient magnitude field
(T1 ¼ 300 K, uinj ¼ 15 m/s, Tinj ¼ 120 K, Dinj ¼ 254mm).

Figure 4. Radial distributions of normalized density at different axial
locations (T1 ¼ 300 K, uinj ¼ 15 m/s, Tinj ¼ 120 K, Dinj ¼ 254mm).

Figure 5. Schematic diagram of shear-coaxial injection of oxygen and
methane.

N. Zong and V. Yang226



D
ow

nl
oa

de
d 

B
y:

 [L
i, 

H
ua

gu
an

g]
 A

t: 
18

:2
3 

3 
M

ar
ch

 2
00

8 

large-scale vortices shed from the outer rim of the LOX

post. As those vortices develop, the two shear layers

separated by the LOX post merge. Although those

energetic eddies concentrate on the light fluid side, they

entrain the denser oxygen much deep into the methane

stream and greatly facilitate the mixing process.

The situation with chemical reactions is also con-

sidered. LOX and methane are injected at temperatures of

122 and 300K, respectively. The bulk velocities of the two

streams are 13 and 75m/s, respectively. The mixture and

momentum–flux ratios are 3 and 2.5, respectively. The

injection conditions are typical of operational liquid-

propellant rocket engines. The combustion chamber is

preconditioned with a mixture of CO2 and H2O at the

stoichiometric ratio and 1800K. The ambient pressure is

fixed at 100 atm. A one-step global chemical kinetics

model for methane and oxygen is employed (Westbrook

and Dryer 1981).

Figure 7 shows snapshots of vorticity, temperature,

methane mass fraction, and compressibility-factor fields.

A diffusion-dominated flame emanates immediately from

the LOX post and propagates downstream along the

surface of the LOX stream. Awake region, which consists

of hot combustion products, effectively separates the

methane and LOX streams. Similar to the non-reacting

flow case, the near-field flow dynamics are characterized

by the evolution of the three mixing layers originating

from the inner and outer edges of the methane annulus and

the inner rim of the LOX post. The evolution of the inner

mixing layer of the methane stream, however, is slightly

inhibited by the expansion of the combustion products in

the flame zone. Because of the strong density stratification

between the oxygen stream and flame, the large-scale

vortices emerging from the outer rim of the LOX post

evolve in a manner analogous to that produced by a

backward-facing step and mainly reside on the lighter

fluid side. Consequently, the denser oxygen stream is less

influenced by those vortices.

To assess the numerical performance of the present

scheme, calculations are also conducted using the

preconditioning scheme developed in Meng and Yang

(2003) for both the non-reacting and reacting flows. The

same flow solver described in Section 3 is employed, but

with the preconditioning formulation based on the

pressure–enthalpy type of primitive variables and a

different preconditioning matrix in Meng and Yang

Figure 6. Snapshots of vorticity, temperature, oxygen mass fraction,
and compressibility-factor fields of shear-coaxial injection of oxygen and
methane (p1 ¼ 100 atm, TO2 ¼ 200 K, uO2 ¼ 10 m/s, TCH4 ¼ 300 K,
uCH4 ¼ 30 m/s).

Figure 7. Snapshots of vorticity, temperature, methane mass fraction
and compressibility-factor fields near the injector faceplate
( p1 ¼ 100 atm, TO2 ¼ 122 K, uO2 ¼ 13 m/s, TCH4 ¼ 300 K,
uCH4 ¼ 75 m/s).

Figure 8. Convergence histories in the pseudo-time domain for shear-
coaxial injection and combustion of oxygen and methane.
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(2003). The use of enthalpy as one of the dependent

variables leads to an iteration solution of the real-fluid

equation of state by means of the Newton-Raphson

method with a convergence criterion of jDrj=r # 1026

and jDTj=T # 1026: A relaxation of this criterion may

result in an overflow of the calculation due to strong

property variations in the flowfield. Figure 8 compares the

convergence histories of computations using the schemes

developed in the present study and in Meng and Yang

(2003). Because the same temporal and spatial discretiza-

tion techniques are employed, the two schemes exhibit an

almost identical behaviour of convergence in terms of the

number of pseudo-time iterations. The present scheme,

however, is much more efficient because it avoids

laborious iterations in determining temperature from

enthalpy. Table 3 lists the CPU times per pseudo-time

iteration, tsp, and the times for solving the equation of

state, teos. All the computations were performed on a

Pentium IV 2.4 GHz processor. Less than 5% of the total

CPU usage is expended for solving the equation of state

with the present scheme, as opposed to more that 50% in

the scheme in Meng and Yang (2003). The overall

computational time is also reduced by half. Another major

benefit of the present scheme is that the computational

burden for each spatial grid cell is the same because no

iterations are required for solving the equation of state.

The load balance among numerical blocks is much easier

to achieve on a distributed computing facility.

6. Conclusions

A general treatment of real-fluid thermodynamics within

the framework of a preconditioning scheme has been

established. All of the numerical properties are derived

directly from fundamental thermodynamics theories based

on the concepts of partial-mass and partial-density

properties. The algorithm is self-consistent and robust,

and can accommodate any equation of state for fluid

mixtures. The scheme employs temperature instead of

enthalpy as the primary dependent variable in the

preconditioned energy equation. As a consequence, the

laboriously iterative solution of the equation of state can

be avoided. The computational burden is uniform

throughout the entire domain. A series of sample

calculations, including the injection and combustion of

cryogenic fluids under supercritical conditions, were

conducted to assess the effectiveness of the scheme at

various fluid states. In addition, a numerical stability

analysis was performed to characterize the algorithm

behaviour over a broad range of flow conditions.
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A Appendix A

The Jacobian matrices, T ; ›Q=›Q̂, A ; ›E=›Q̂, B ; ›F=›Q̂ and D ; ›S=›Q̂ are derived as:
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