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Interactions Between Shock and Acoustic Waves
in a Supersonic Inlet Diffuser

Jong Y. Oh,∗ Fuhua Ma,† Shih-Yang Hsieh,‡ and Vigor Yang§

Pennsylvania State University, University Park, Pennsylvania 16802

The interactions between shock and acoustic waves in a supersonic inlet diffuser are investigated numerically.
The model treats the viscous flowfield in an axisymmetric, mixed-compression inlet operating under supercritical
conditions. It is solved by means of a finite-volume approach using a four-stage Runge–Kutta scheme for tempo-
ral derivatives and the Harten–Yee upwind total-variation-diminishing scheme for spatial terms. Various distinct
flow structures, including shock/boundary-layer and shock/shock interactions, are studied under the effects of
externally imposed pressure oscillations at the diffuser exit over a wide range of forcing frequencies and ampli-
tudes. As a result of the terminal shock oscillation induced by the impressed disturbances and the cyclic variation
of the oblique/normal shock intersection, large vorticity fluctuations are produced in the radial direction. The
characteristics of the shock/boundary-layer interactions (such as the size of the separation bubble, the terminal
shock configuration, and the vorticity intensity) are also greatly influenced by the acoustic-driven shock oscillation.
The overall response of the inlet aerodynamics to acoustic waves can be characterized by the mass-transfer and
acoustic-admittance functions at the diffuser exit. Their magnitudes decrease with increasing frequency. A super-
sonic inlet acts as an effective acoustic damper, absorbing disturbances arising downstream. Severe flow distortion,
however, may arise from shock oscillation and subsequently degrade the combustor performance.

Nomenclature
A = cross-sectional area
Ad = acoustic admittance function
a = speed of sound
cp = constant-pressure specific heat
et = specific total energy
f = fluctuation frequency
i = imaginary unit
M = Mach number
Ms = Mach number immediately in front of terminal shock
ṁ = mass flow rate
p = pressure
pb = back pressure (pressure at inlet exit under

steady-state calculation)
p0 = total pressure
R = gas constant
Rc = radius of cowl lip
Re = radius of inlet exit
Rm = mass response function, identical to (ṁ ′/ ¯̇m)/(p′/ p̄)
r = radial coordinate
s = entropy
T = temperature
t = time
u = axial velocity
v = radial velocity
x = axial coordinate
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xs = axial position of terminal shock
β = acoustic reflection coefficient
γ = specific heat ratio
�xs = shock-displacement amplitude
ε = relative amplitude of imposed pressure fluctuation
ρ = density
� = dimensionless frequency, defined by Eq. (19)
ω = radian frequency, 2π f

Subscripts

e = flow properties at inlet exit
1 = flow properties immediately upstream of shock
2 = flow properties immediately downstream of shock

Superscripts

′ = fluctuating property
¯ = mean property

I. Introduction

A N inlet and its interaction with a combustor represent a crucial
aspect in the development of ramjets and other supersonic air-

breathing engines. The inlet is designed to capture and supply stable
airflow at a rate demanded by the combustor and to maintain high
pressure recovery and an appropriate stability margin under various
engine operating conditions. The overall vehicle performance de-
pends greatly on the energy level and flow quality of the incoming
air. A small loss in inlet efficiency translates to a substantial penalty
in engine thrust. Furthermore, any change in the inlet flow structure
may modify the downstream combustion characteristics and sub-
sequently lead to undesirable behavior, such as flame blowoff and
flashback. Thus, matching inlet flow properties to engine require-
ments is of fundamental importance to designers.1,2

The oscillatory behavior of an inlet diffuser flow caused by longi-
tudinal combustion instabilities has often plagued the development
of ramjet engines.3 As a result of unsteady combustion processes,
acoustic waves are produced in the combustor and propagate up-
stream to interact with the shock waves in the inlet. The resultant
flow oscillations in the inlet diffuser then either propagate down-
stream in the form of acoustic waves or are convected downstream
with the mean flow in the form of vorticity and entropy waves and

486



OH ET AL. 487

further reinforce the unsteady motions in the combustor. A feedback
loop is, thus, established between the inlet and the combustor. In ex-
treme cases, the shock may be disgorged out of the inlet due to large
flow fluctuations, leading to a catastrophic engine failure. A robust
inlet design must provide a proper stability margin to accommodate
the shock oscillation at the expense of reduced pressure recovery
and flow distortion. The present work is an attempt to study the
response of inlet aerodynamics to flow disturbances arising from
the combustor. Emphasis is placed on the interactions between the
shock and acoustic waves in a complicated flowfield typical of an
operational supersonic inlet diffuser.

Several experimental investigations have been performed on un-
steady inlet diffuser flows with shock waves. In Refs. 4–9, extensive
experimental results were reported on transonic and supersonic inlet
diffuser flows with pressure oscillations. Various unsteady flow phe-
nomena, such as shock-induced flow separation and shock/acoustic
wave interactions under self-excited and forced oscillations, were
treated in detail. Gustavsson et al.10 studied the characteristics of an
external-compression supersonic inlet under the effects of pressure
disturbances produced by a rotating mechanism at the diffuser exit,
to simulate the valve open/close procedures in a pulse detonation
engine. Numerical studies were also conducted to reveal details of
flowfields by solving two-dimensional conservation equations. Liou
and Coakley11 treated both forced and self-excited oscillations in
two-dimensional transonic diffusers with different shock strengths.
The work was later extended by Hsieh et al.12 to provide a closer
comparison with experiments.9 Hsieh et al.13,14 also examined, in a
series of simulations, the response of inlet aerodynamics to various
types of pressure disturbances at the diffuser exit, including sinu-
soidal oscillations over a range of amplitude from 1 to 20% of the
mean quantity, single pressure pulses, and monotonically increas-
ing backpressure. Special attention was given to the shock dynamics
in a complicated flowfield involving flow separation and acoustic
excitation.

Analytical studies were carried out to provide direct insight into
the interactions between the shock and acoustic waves in a super-
sonic inlet. Culick and Rogers15 treated small-amplitude motions of
a normal shock in a one-dimensional flow. The response of the shock
wave to imposed acoustic oscillations was characterized with an ad-
mittance function for both an inviscid flow and a case in which the
influences of flow separation were crudely approximated. Yang and
Culick16 considered the same flow model for finite-amplitude mo-
tions using a finite difference scheme with a shock-fitting algorithm.
Several different types of disturbances, including large-amplitude
periodic oscillations and pulse perturbations, were examined over a
broad range of frequencies, along with the effects of liquid droplets
on the shock response. Biedron and Adamson17 characterized the
shock wave response to variations in backpressure and wall shape in
a two-dimensional supersonic inlet diffuser by means of an asymp-
totic expansion method. Recently, Robinet and Casalis18 carried out
a one-dimensional stability analysis based on a small-perturbation
technique to study self-sustained shock oscillations in several dif-
fusers. Although the frequencies of shock oscillations can be pre-
dicted in some cases, their stability approach is limited to the core
region where viscous effects are neglected.

Most of the previous studies only treated the flow dynamics down-
stream of the normal shock in an idealized convergent–divergent
channel. The flow evolution upstream of the terminal shock and its
influence on the shock structure and response were ignored, giving
results remote from the situation in an actual inlet diffuser. This
paper presents a more complete analysis of the flowfield in an ax-
isymmetric, mixed-compression supersonic inlet under conditions
with and without external forcing. The physical domain of concern
includes the entire inlet diffuser, spanning from the freestream to
the interface between the inlet and combustor. The formulation ac-
commodates the full conservation equations along with a calibrated
two-equation turbulence model and is solved numerically by means
of a finite-volume approach. The numerical scheme includes a four-
stage Runge–Kutta algorithm for temporal discretization and the
Harten–Yee upwind total-variation-diminishing (TVD) method for
spatial discretization.

The specific objectives of this work are 1) to investigate the flow
development in an entire inlet diffuser under the effects of impressed
disturbances at the exit, 2) to examine the details of flow structures
in the vicinity of the terminal shock, including the shock/boundary-
layer and shock/shock interactions, and 3) to characterize the re-
sponse of inlet aerodynamics to incident acoustic waves.

II. Theoretical Formulation and Numerical Method
A. Governing Equations

The analysis of the supersonic inlet aerodynamics is based on the
Favre-averaged conservation equations of mass, momentum, and
energy in the axisymmetric coordinates. In vector notation, this set
of equations becomes

∂Q
∂t

+ ∂

∂x
(E − Ev) + ∂

∂r
(F − Fv) = H (1)

where Ev and Fv are diffusion flux vectors and H is the source-
term vector. The conservative variable vector Q and convective flux
vectors E and F are defined as

Q = r [ρ, ρu, ρv, ρet ]
T (2)

E = r
[
ρu, ρu2 + p, ρuv, (ρet + p)u

]T
(3)

F = r
[
ρv, ρuv, ρv2 + p, (ρet + p)v

]T
(4)

In the preceding equations, standard fluid mechanics notation is
used. The pressure p and temperature T are obtained through the
equation of state for a perfect gas,

p = (γ − 1)
[
ρet − 1

2 ρ(u2 + v2)
]

(5)

T = p/(ρR) (6)

The viscosity µ and thermal conductivity λ contain both molec-
ular and turbulent components,

µ = µl + µt , λ = λl + λt (7)

The laminar component of viscosity µl is obtained from
Sutherland’s law (see Ref. 19)

µl/µ0 = [(T0 + S)/(T + S)](T/T0)
1.5 (8)

where the reference quantities are chosen to be T0 = 300 K,
µ0 = 1.8464 × 10−5 kg/m · s, and S = 110 K for the current prob-
lem. The turbulent viscosity µt is evaluated using the two-layer
model of Rodi because of its ease of implementation and reasonable
accuracy in simulating wall-bounded shear layers.20 The approach
combines the standard high Reynolds number k–ε model for the bulk
flow region and a one-equation model for the near-wall region. The
former solves for turbulent kinetic energy k and its dissipation rate
ε directly from the turbulence transport equations. The latter, how-
ever, only treats the transport equation for turbulent kinetic energy,
with its dissipation rate determined from a prescribed length-scale
distribution. The molecular and turbulent thermal conductivities, λl

and λt , are calculated, respectively, from

λl = cpµl/Prl , λt = cpµt/Prt (9)

where cp is the specific heat at constant pressure. The Prandtl num-
bers Prl and Prt are taken to be 0.73 and 0.9, respectively.

B. Boundary Conditions
The physical domain under consideration is shown schematically

in Fig. 1. It consists of the entire internal flow passage in a mixed-
compression supersonic inlet diffuser and a freestream region up-
stream of the inlet. The types of boundaries encountered for the
internal and external flowfields are the inflow (AH), outflow (DE),
symmetry (AB and CD), wall (BC, EF, and FJ), and far-field (HI and
IJ) conditions. Because the inflow is supersonic along the boundary
AH, the flow variables are fixed at their corresponding freestream
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Fig. 1 Schematic of mixed-compression supersonic inlet and compu-
tational domain.

values. At the exit boundary of the inlet, DE, a constant backpres-
sure is specified, and the other flow variables are extrapolated from
the interior for steady-state calculations. For cases involving flow
oscillations, a sinusoidal pressure fluctuation is applied at the dif-
fuser exit and the nonreflective boundary conditions proposed by
Watson and Myers21 is implemented. The radial velocity and the
normal gradients of the axial velocity, pressure, and temperature
at the centerline are set to zero due to flow symmetry. The no-slip
boundary condition and zero normal gradients of the pressure and
temperature are enforced along the wall. Finally, the flow variables
at the far-field boundary are extrapolated from the interior along
the characteristic lines, based on the solution of a simple wave,22 to
avoid shock reflections.

C. Numerical Method and Model Validation
The governing equations and their associated boundary condi-

tions as just outlined are solved numerically by means of a density-
based, finite-volume methodology. Temporal discretization is
obtained using a four-stage Runge–Kutta integration method. The
spatial discretization employs an upwind TVD scheme developed
by Harten23 and Yee24 in generalized coordinates for convective
terms and a second-order central-differencing method for diffusion
terms. Specific details of the numerical algorithm may be found in
Ref. 25.

The overall approach has been validated against a variety of flow
problems to assess its accuracy. One of the validation cases in-
volves a supersonic flow over a cone with a half-angle of 20 deg.
The freestream Mach number and pressure are 2.1 and 0.29 atm,
respectively, under which conditions a conical oblique shock is at-
tached to the cone vertex. The exact solution for this case is available
by solving the ordinary differential equation derived by Taylor and
Maccoll26 and it is compared with the present calculation. The cal-
culated Mach number and pressure distributions with respect to the
angle of the ray from the cone vertex are in good agreement with the
exact solutions.25 The turbulence model is tested for the turbulent
boundary layer on a flat plate. The calculated velocity profiles agree
very well with the results from the direct numerical simulations for
Reθ = 1.41 × 103 (Ref. 27). A more detailed discussion of the model
validation is given in Ref. 25.

III. Results and Discussion
After validation, the analysis is applied to the flowfield in an ax-

isymmetric, mixed-compression supersonic inlet under conditions
with and without external forcing at the diffuser exit. Figure 2 shows
the inlet configuration treated in the current study, optimized for a
flight altitude of 9.3 km and a Mach number of 2.1. The front part
of the centerbody involves a double cone with half-angles of 20 and
31.25 deg. The cowl radius is Rc = 3.4 cm. The throat is located at
about x = 7.87 cm, with a radial size of 1.05 cm. The freestream
static pressure and temperature are 0.29 atm and 228 K, respectively,
and the corresponding total pressure and temperature are 2.65 atm
and 428 K. The Reynolds number based on the cowl radius and
freestream conditions is 6.54 × 105.

The computational domain shown in Fig. 1 comprises an inter-
nal flow region, that is, the inner domain, containing most of the
essential flow structure, and an external flow region, that is, the
outer domain, which becomes important when flow spillage over

Fig. 2 Configuration of mixed-compression supersonic inlet.

the cowl lip occurs at subcritical operating conditions. The numer-
ical grid system consists of 601 × 101 points for the inner domain
and 201×81 points for the outer domain. The grids are stretched
toward the walls to resolve rapid flow variations in the boundary
layers. A grid-independence study was performed by increasing the
grid numbers by 50% in the axial direction and 25% in the radial
direction. Results for the steady-state flowfields obtained from these
two grids are almost identical. The relative difference in terms of the
terminal shock position is less than 1%. A stricter grid-independence
study may be conducted based on the Richardson extrapolation (see
Ref. 28).

A. Steady-State Flowfield
The steady-state flowfield is first studied to establish a funda-

mental understanding of the flow structure and to provide a basis
for the examination of the response of the inlet flow to downstream
disturbances. Figure 3 shows the Mach number, pressure, and vortic-
ity contours for two different backpressures (pb = 2.1 and 2.2 atm)
under steady-state operating conditions. The two leading conical
shocks generated by the double-cone centerbody compress the air-
flow externally, merge slightly above the cowl lip, and form a strong
oblique shock extending into the external-flow region. In addition, a
shock stemming from the cowl inner surface continues downstream,
hitting and reflecting from the cowl and centerbody walls and finally
leading to a terminal normal shock. The flow in this region undergoes
a series of compression and expansion processes, being compressed
by reflected shocks and expanded by expansion waves, as clearly il-
lustrated by the enlarged Mach number contours in Fig. 4. The wavy
distributions of the Mach number and pressure along the middle line
of the inlet duct, as shown in Fig. 5 for the case of pb = 2.1 atm, also
demonstrate this feature. The flow finally becomes subsonic after
passing through the terminal shock. During this process, the flow
direction, which is originally deflected away by the leading shocks,
is adjusted back to the axial direction. The present design allows the
inlet to recover a high percentage of the freestream total pressure by
decelerating the airflow through the shock train. The total-pressure
recovery coefficients are 84% for the case of pb = 2.1 atm and 88%
for pb = 2.2 atm, and the Mach numbers immediately in front of the
terminal shocks are 1.42 and 1.32, respectively. The terminal shock
is located in the divergent section (xs = 9.7 cm) for pb = 2.1 atm.
This situation corresponds to a supercritical condition. The shock
is shifted upstream to a position near the throat (xs = 7.9 cm) for
pb = 2.2 atm, corresponding to a near-critical condition.

Because of viscous effects, boundary layers exist near both the
cowl and centerbody walls. Their interactions with shock waves
play an important role in dictating the inlet flow structure. Figure 6
shows the closeup view of the flowfield near the terminal shock.
The boundary layer prohibits an abrupt change in pressure across
the shock near the wall because the flow in the inner part of the
boundary layer remains subsonic. Part of the pressure rise across
the shock is transmitted upstream through this subsonic region and
causes the streamlines to diverge. The boundary layer thickens and
may be separated from the wall if the pressure rise is sufficiently
large. As a consequence, the terminal shock is no longer one di-
mensional. An oblique shock forms due to the rapid growth of the
boundary-layer displacement and runs into the terminal shock. If the
flow deflection is sufficiently large after passing the leading oblique
shock, a rear oblique shock emerges to form a λ structure.1,29 The
abrupt thickening of the boundary layer downstream of the normal
shock reduces the effective flow passage area and subsequently ac-
celerates the subsonic flow behind the shock. The steep pressure
decrease (or Mach number increase) immediately downstream of
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a) Mach number

b) Pressure contours

c) Vorticity contours

Fig. 3 Mach number, pressure, and vorticity contours with backpressures of 2.1 and 2.2 atm under steady-state conditions.

Fig. 4 Closeup of Mach number contours and streamlines, pb = 2.1 atm.
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Fig. 5 Mach number and pressure distributions along midline of inlet
diffuser under steady-state condition, pb = 2.1 atm.

Fig. 6 Closeup of Mach number (flood) and pressure (line) fields near
terminal shock, pb = 2.1 atm.

the terminal shock in the core flow region, as shown in Fig. 5, is
attributed to this post-shock expansion effect.

Because the flow passing through the normal shock is slower than
that through the oblique shocks, two vortex sheets emanate from the
upper and lower shock bifurcation points and are convected down-
stream. This phenomenon is clearly seen in the vorticity contours
in Fig. 3. Another vortex sheet develops due to the different com-
pression history of the flow immediately upstream of the terminal
shock: some of the flow passes through the final reflected oblique
shock and some of it does not. Note, however, that much of the
vorticity downstream of the terminal shock is generated in the wall
boundary layers. The vorticity scale in Fig. 3 was carefully chosen
to elucidate the strength of the vorticity in the core flow region. The
vorticity magnitude inside the boundary layers is, of course, much
larger than that in the core flow region.

B. Response of Inlet Flow to Downstream Disturbance
To characterize the response of the inlet aerodynamics to dis-

turbances arising downstream, sinusoidal pressure oscillations are
imposed at the exit plane, simulating acoustic motions induced by
the unsteady combustion in the chamber,

p′
e = εpb sin(ωt) (10)

where ε is the relative amplitude of the oscillation. The study con-
siders a wide range of oscillation amplitudes, with 0 ≤ ε ≤ 10%,
and frequencies, with 250 ≤ f ≤ 4000 Hz. The baseline conditions
include ε = 0.05 and f = 500 Hz. For each case, calculations are
conducted over an extended time period to ensure that the flowfield
has reached its steady oscillation.

Unsteady Flowfield
Figure 7 shows the temporal evolution of the pressure distribu-

tions along the cowl and centerbody walls and the midline over one

cycle of oscillation for the baseline case. The corresponding Mach
number contours near the terminal shock are also presented to reveal
the detailed flow structure. In Fig. 7, S is the flow separation point
on the centerbody wall, PP the pressure pulse, and Ms the Mach
number in front of the terminal shock. Each oscillation cycle begins
when the terminal shock is located at its time-averaged position. As
the shock moves upstream, its shape and strength vary in response
to the change in the local flowfield and the intersection with the up-
stream oblique shocks. Because it is the relative Mach number that
determines the strength of a shock, the terminal shock may either
strengthen or weaken as it travels upstream, in spite of the decrease
in the flow velocity upstream of the shock (Fig. 4). This is in contrast
to the previous observation by Hsieh et al.14 that the shock becomes
weaker as it moves upstream. The discrepancy may be attributed to
the smoother diffuser contour near the terminal shock in the present
study. As a result, the variation of the local flow velocity is smaller,
and the shock velocity becomes higher and may reach 50 m/s for the
baseline case. The resultant flow Mach number relative to the termi-
nal shock, thus, increases during its propagation. The terminal shock
reverses its direction after reaching the farthest upstream position
at the time of about ωt = π . Similarly, as it travels downstream, the
strength first increases and then decreases when the increase in the
shock velocity exceeds that in the local flow velocity. At ωt = 7π/6,
the terminal shock becomes a Mach stem attached to the cowl wall
and, thus, cannot be detected in the core region. As the shock veloc-
ity further increases, the terminal shock disappears and degenerates
to a pressure pulse. On the other hand, a strong adverse pressure
gradient arising from the impressed disturbance gradually devel-
ops downstream and eventually steepens into a secondary shock.
This shock continuously increases its strength as it moves upstream
and finally merges into the primary shock (or pressure pulse) to
form a stronger shock. The first dense-line region (denoted PP) in
the Mach number snapshot at ωt = 3π/2 is in fact a pressure pulse
rather than a shock, whereas the second dense-line region corre-
sponds to the weak secondary shock. Figure 7 also shows that the
terminal shock induces boundary-layer separation once its strength
reaches a threshold value with Ms around 1.4. The two separation
points at ωt = 5π/3 (S1 and S2) result from the terminal shock and
the adverse pressure gradient caused by the impressed acoustic wave
and divergence of the cross-sectional area, respectively.

Figure 8 shows the temporal evolution of the fluctuating vortic-
ity field (obtained by subtracting the steady-state quantity from the
instantaneous value) within one cycle of oscillation for the base-
line case. The continuous movement of the terminal shock and its
subsequent influence on the near-wall flowfields give rise to large
vorticity fluctuations. The vortex sheets, originating from the inter-
sections between the terminal and oblique shocks, also change their
distributions and strengths periodically in both the axial and radial
directions as the terminal shock oscillates. The resultant vorticity
fluctuation is complex and multidimensional.

Shock Oscillation
Figure 9 shows the time histories of the instantaneous termi-

nal shock location for different forcing frequencies and amplitudes.
The shock position is determined by searching along the midline
for the point at which the flow Mach number equals unity. At t = 0,
a periodic pressure oscillation is imposed at the diffuser exit. The
shock begins to respond after a short duration, when the distur-
bance arrives. The shock then executes a sinusoidal motion around
its mean position for small-amplitude fluctuations. The oscillation
of the shock displacement in general increases with increasing am-
plitude and decreasing frequency of the impressed disturbance, a
phenomenon which was well established in previous studies.15,16

As the disturbance becomes larger, that is, ε = 5%, many nonlin-
ear phenomena emerge, as elucidated in Fig. 9b. The shock moves
faster downstream than upstream, and its oscillation is no longer
sinusoidal. In addition, a secondary shock forms and the primary
shock disappears sometime within the cycle (Fig. 7). Further in-
creasing the oscillation amplitude to ε = 10% causes the terminal
shock to travel continuously upstream and eventually be disgorged
out of the inlet.
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Fig. 7 Temporal evolution of pressure distributions along walls and midline of inlet and Mach number contours within one cycle of oscillation,
ε= 0.05 and f = 500 Hz.

Figure 10 shows the effect of forcing frequency on the excur-
sion of the terminal shock for two different amplitudes, ε = 1% and
5%. The shock displacement decreases with increasing frequency.
For small-amplitude fluctuations (ε = 1%), the farthest upstream
and downstream positions are nearly symmetric with respect to the
steady-state position. The oscillation amplitudes of the shock move-
ment can be predicted using the following analytic formula, derived
by Culick and Rogers,15 which treats the response of a normal shock
wave to downstream disturbances in an inviscid flowfield:

�xs = �p

p̄1

/√[
2π f

ā1
· 4γ M̄1

γ + 1

]2

+
[(

1

A

dA

dx

)

s

g(M̄1)

]2

(11)

where p̄1, ā1, and M̄1 are the mean pressure, sound speed, and Mach
number immediately upstream of the shock and �p is the pressure-
oscillation amplitude behind the shock. The subscript s represents
the value at the normal shock, and

g(M̄1) = [
(γ 2 + 1)M̄2

1 + (γ − 1)
]/

[(γ + 1)2/2γ ] (12)

Figure 11 shows good agreement between the analytical prediction
and the present numerical result. The situation with finite amplitude
oscillations, however, becomes considerably different. The various
nonlinear and multidimensional effects involved in the interactions
between the acoustic and shock waves in a viscous environment

prohibit the use of a simple one-dimensional model to predict the
shock response.

Flow Properties at Exit Plane
The flow properties at the diffuser exit characterize the cou-

pling between the inlet and the combustor of an engine and must
be carefully studied. Figure 12 shows the fluctuations of the ax-
ial velocity and total pressure at different radial positions at the
trailing edge of the centerbody over one cycle of oscillation for
the baseline case (ε = 5% and f = 500 Hz). These quantities are
normalized with respect to the time–mean speed of sound and exit
pressure, respectively. The velocity oscillations are approximately
sinusoidal except in the region near the upper wall, where the vor-
tex sheets extending from the intersection between the oblique
and terminal shocks take effect. The fluctuation amplitude varies
in the radial direction, from less than 3.6% in the upper part to
about 6% at the midpoint. Based on one-dimensional acoustic the-
ory, the normalized velocity fluctuation has the same amplitude
as the normalized pressure fluctuation for a traveling wave in an
inviscid flowfield. The deviation of the present result from that
predicted from simple acoustic theory arises from the vortical fluctu-
ations in the viscous layers and the oscillatory intersection between
the oblique and terminal shock waves. The reflection of the incident
disturbance from the centerbody walls also contributes to such a
nonuniform distribution of flow variations in the radial direction.
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a)

b)

Fig. 8 Fluctuating vorticity field within one cycle of oscillation near
terminal shock, ε= 0.05 and f = 500 Hz: a) global view and b) closeup.

The total pressure fluctuation exhibits a sinusoidal behavior. The
phase difference between the velocity and pressure fluctuation is
about 180 deg. When it is considered that

p0 = p[1 + (γ − 1)/2 · u2/a2]γ /(γ − 1) (13)

and that the speed of sound a is almost constant, the relative am-
plitude of the total pressure fluctuation is smaller than that of the

a)

b)

Fig. 9 Time histories of terminal shock locations for different forc-
ing frequencies: a) small-amplitude oscillations and b) finite-amplitude
oscillations.

Fig. 10 Effect of forcing frequency and amplitude on terminal shock
movement.

Fig. 11 Comparison of oscillation amplitude of terminal shock move-
ment between numerical and analytical results, ε= 0.01.
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a)

b)

Fig. 12 Variations over time at trailing edge of centerbody over one
cycle of oscillation, ε= 0.05 and f = 500 Hz: a) fluctuating axial velocity
and b) total pressure at five different radial positions.

pressure due to the out-of-phase relationship between the fluctuat-
ing velocity and pressure. The normalized fluctuation amplitude of
the total pressure, p′

0,e/γ p̄0,e, is 1.8% at the midpoint, which is half
of the corresponding pressure fluctuation.

One of the inlet design requirements is to provide a uniform dis-
tribution of the discharge velocity at the exit plane, to achieve stable
combustion and prevent the occurrence of flame blowoff and flash-
back. It is, thus, important to examine the effect of acoustic dis-
turbances on the discharge profiles. Figure 13 shows the temporal
evolution of the radial distributions of the axial velocity and total
pressure at the trailing edge of the centerbody during one cycle of
oscillation for the baseline case. The axial velocity increases from
the bottom wall, reaches its maximum above the midpoint, and then
decreases toward the upper wall. The flowfield is severely distorted
due to the merging of the two boundary layers originating from the
top and bottom roots of the terminal shock (Fig. 3). The impressed
disturbances, although they do cause flow oscillations, exert little
influence on the radial distributions of the flow properties at the exit
plane.

Airflow matching is another important issue of inlet design. En-
gine performance may degrade rapidly if the captured flow does not
meet the requirement for efficient and stable combustion.2 Figure 14
shows the transfer function between the exit mass flow rate and the
impressed pressure fluctuation. The amplitude varies from 1.6 to
about 2.1, depending on the oscillation frequency and amplitude.
A simple mass balance relates the fluctuating mass flow rate to the
local velocity, pressure, and entropy fluctuations as follows:

ṁ ′
e/

¯̇me = ρ ′
e/ρ̄e + u′

e/ūe = p′
e/γ p̄e − s ′

e/cp + u′
e/ūe (14)

where the subscript e denotes the bulk flow quantity at the exit. The
mass response function is then expressed as

Rm ≡ ṁ ′
e/

¯̇me

p′
e/ p̄e

= 1

γ

(
1 + u′

e/āe

p′
e/γ p̄e

· āe

ūe
− s ′

e/cp

p′
e/γ p̄e

)
(15)

a)

b)

Fig. 13 Temporal evolution of radial distributions within one cycle of
oscillation, ε= 0.05 and f = 500 Hz: a) axial velocity and b) total pressure
at trailing edge of centerbody.

Fig. 14 Temporal evolution of mass flow fluctuations at trailing edge
of centerbody within one cycle of oscillation for different forcing ampli-
tudes and frequencies.

If we ignore the entropy fluctuation arising from the shock oscilla-
tion and the acoustic wave reflected from the shock,

(u′
e/āe)/(p′

e/γ p̄e) = − 1 (16)

the mass response function can be directly related to the imposed
pressure disturbance,

Rm ≡ (1 − āe/ūe)/γ (17)

Substituting āe = 408 m/s and ūe = 127 m/s into Eq. (17) gives an
amplitude of 1.58, which represents a major part of the overall mass
response. In addition to the imposed acoustic disturbance, the mass
flow fluctuation contains a contribution from the shock oscillation.
Even for a fixed mass flow rate upstream of the shock, an oscillation
will occur in the downstream region due to the shock motion. Such
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a)

b)

Fig. 15 Acoustic-admittance function at exit plane as function of fre-
quency: a) magnitude and b) phase angle.

a shock-induced oscillation can be estimated by the product of the
shock velocity, cross-sectional area, and density difference across
the shock.16

The overall response of the inlet aerodynamics can be character-
ized using the acoustic admittance function and reflection coefficient
at the exit plane. Results can be used as the upstream boundary con-
ditions to investigate the stability characteristics of the combustor
in the downstream direction. Figure 15 shows the magnitude and
phase of the admittance function, calculated based on the fluctua-
tions of the pressure and mass-averaged axial velocity at the exit
plane. Also included is the admittance function of a normal shock
in response to downstream disturbances, derived analytically by
Culick and Rogers15 for an inviscid flow. The analytical formula,
after correcting a typographical error in Ref. 15, is expressed as

Ad ≡ u′/ā2

p′/γ p̄2

=
(

− 2

γ + 1
· M̄2

1 + 1

M̄2
1

�i + 2γ M̄2

γ + 1

)/[
4M̄1

γ + 1

(
p̄1

p̄2

ā2

ā1

)
�i

− γ 2 + 1

γ 2 + γ
·
(

M̄2
1 + γ − 1

γ 2 + 1

)(
M̄2

1 − γ − 1

2γ

)−1]
(18)

where p̄, ā, and M̄ are the mean pressure, speed of speed, and Mach
number, respectively. The subscripts 1 and 2 indicate the quantities
immediately upstream and downstream of the shock, respectively.
The dimensionless frequency � is defined as

� = 2π f

ā2

(
1

A

dA

dx

)−1

s

(19)

with subscript s representing the value at the normal shock.
The acoustic admittance function varies considerably in the low-
frequency region and levels off at high frequencies, as in the analyti-
cal results. The discrepancy between the one-dimensional analytical

Fig. 16 Magnitude of acoustic-reflection coefficient at exit plane as
function of frequency.

and present numerical results mainly arises from the reflection of
the incident acoustic wave from the centerbody wall and the nonlin-
ear behavior of the shock oscillation as well as its induced vorticity
oscillation. The amplitude of the imposed pressure disturbance also
plays a significant role. The phase angle of the admittance function
remains close to π , revealing the predominance of the upstream-
traveling wave in the flowfield.15,16

Figure 16 shows the magnitude of the acoustic reflection coeffi-
cient at the exit plane, defined as the ratio of the magnitude between
the reflected and incident waves. The reflection coefficient can be re-
lated to the admittance function as follows, based on simple acoustic
theory:

β = (1 + Ad)/(1 − Ad) (20)

It has been well established that the magnitude of the reflection co-
efficient of a normal shock decreases with increasing frequency.15

Also, the shock acts as an effective acoustic damper, absorbing
acoustic disturbances arising from the downstream region. The
shock reflection coefficient is in general small, and the acoustic
field in a supersonic inlet is dominated by wave motions traveling
upstream. The present analysis corroborates the analytical predic-
tion developed in Ref. 15, in spite of the small differences due to the
multidimensional effects and reflection from the centerbody wall,
which were not taken into account in the analytical theory.

IV. Summary
The interactions between shock and acoustic waves were nu-

merically investigated for a viscous flowfield in an axisymmetric,
mixed-compression supersonic inlet diffuser under supercritical op-
eration. The response of inlet aerodynamics to imposed pressure
disturbances at the exit were examined over a wide range of forcing
frequencies (250 ∼ 4000 Hz) and amplitudes (1 ∼ 10%). Important
phenomena of concern include temporal and spatial variations of
mass flow rate, total pressure, and flow distribution, as well as shock
displacement. In general, the acoustic response of the terminal shock
increases with increasing amplitude of the imposed disturbance, but
decreases with frequency. As a result of the shock oscillation, large
vorticity fluctuations are produced in the radial direction. The overall
response of the inlet aerodynamics was characterized by the acous-
tic admittance function and reflection coefficient at the diffuser exit.
Results demonstrate that a supersonic inlet under supercritical op-
eration acts as an effective acoustic damper absorbing disturbances
arising downstream.

Acknowledgment
This work represents a part of the results obtained from a re-

search program supported by the Chung-Shan Institute of Science
and Technology, Taiwan, Republic of China.

References
1Seddon, J., and Goldsmith, E. L., Intake Aerodynamics, 2nd ed., AIAA

Education Series, AIAA, Reston, VA, 1999, pp. 56–61.



OH ET AL. 495

2Yang, V., and Cappuccio, M., Supersonic Inlet Design for Missiles, Re-
search Rept., Dept. of Mechanical Engineering, Pennsylvania State Univ.,
University Park, PA, Jan. 1991.

3Clark, W. J., “Experimental Investigation of Pressure Oscillations in a
Side Dump Ramjet Combustor,” Journal of Spacecraft, Vol. 19, No. 1, 1982,
pp. 47–53.

4Chen, C. P., Sajben, M., and Kroutil, J. C., “Shock-Wave Oscilla-
tions in a Transonic Diffuser Flow,” AIAA Journal, Vol. 17, No. 10, 1979,
pp. 1076–1083.

5Bogar, T. J., Sajben, M., and Kroutil, J. C., “Characteristic Frequencies of
Transonic Diffuser Flow Oscillations,” AIAA Journal, Vol. 21, No. 9, 1983,
pp. 1232–1240.

6Salmon, J. T., Bogar, T. J., and Sajben, M., “Laser Doppler Velocimeter
Measurements in Unsteady, Separated, Transonic Diffuser Flows,” AIAA
Journal, Vol. 21, No. 12, 1983, pp. 1690–1697.

7Sajben, M., Bogar, T. J., and Kroutil, J. C., “Forced Oscillation Experi-
ments in Supercritical Diffuser Flows,” AIAA Journal, Vol. 22, No. 4, 1984,
pp. 465–474.

8Bogar, T. J., Sajben, M., and Kroutil, J. C., “Response of a Supersonic
Inlet to Downstream Perturbations,” Journal of Propulsion and Power, Vol. 1,
No. 2, 1985, pp. 118–125.

9Bogar, T. J., “Structure of Self-Excited Oscillations in Transonic Diffuser
Flows,” AIAA Journal, Vol. 24, No. 1, 1986, pp. 54–61.

10Gustavsson, J., Nori, V., and Segal, C., “Inlet/Engine Interactions in an
Axisymmetric Pulse Detonation Engine System,” Journal of Propulsion and
Power, Vol. 19, No. 2, 2003, pp. 282–286.

11Liou, M. S., and Coakley, T. J., “Numerical Simulations of Un-
steady Transonic Flow in Diffusers,” AIAA Journal, Vol. 22, No. 8, 1984,
pp. 1139–1145.

12Hsieh, T., Bogar, T. J., and Coakley, T. J., “Numerical Simulation and
Comparison with Experiment for Self-Excited Oscillations in a Diffuser
Flow,” AIAA Journal, Vol. 25, No. 7, 1987, pp. 936–943.

13Hsieh, T., Wardlaw, A. B., Jr., Collins, P., and Coakley, T. J., “Numerical
Investigation of Unsteady Inlet Flowfields,” AIAA Journal, Vol. 25, No. 1,
1987, pp. 75–81.

14Hsieh, T., Wardlaw, A. B., Jr., and Coakley, T. J., “Ramjet Diffuser
Flowfield Response to Large-Amplitude Combustor Pressure Oscillations,”
Journal of Propulsion and Power, Vol. 3, No. 5, 1987, pp. 472–477.

15Culick, F. E. C., and Rogers, T., “The Response of Normal Shocks in
Diffusers,” AIAA Journal, Vol. 21, No. 1, 1983, pp. 1382–1390.

16Yang, V., and Culick, F. E. C., “Analysis of Unsteady Inviscid Diffuser
Flow with a Shock Wave,” Journal of Propulsion and Power, Vol. 1, No. 3,
1985, pp. 222–228.

17Biedron, R. T., and Adamson, T. C., Jr., “Unsteady Flow in a Supercrit-
ical Supersonic Inlet,” AIAA Journal, Vol. 26, No. 11, 1988, pp. 1336–1345.

18Robinet, J. C., and Casalis, G., “Shock Oscillations in Diffuser Modeled
by a Selective Noise Amplification,” AIAA Journal, Vol. 37, No. XX, 1999,
pp. 453–459.

19White, F. M., Viscous Fluid Flow, McGraw–Hill, New York, 1974.
20Rodi, W., “Experience with Two-Layer Models Combining the k–ε

Model with a One-Equation Model Near the Wall,” AIAA Paper 91-0216,
Jan. 1991.

21Watson, W. R., and Myers, M. K., “Inflow–Outflow Boundary Condi-
tions for Two-Dimensional Acoustic Waves in Channels with Flow,” AIAA
Journal, Vol. 29, No. XX, 1991, pp. 1383–1389.

22Roache, P. J., Computational Fluid Dynamics, Hermosa, Albuquerque,
1982, pp. 282–283.

23Harten, A., “High Resolution Schemes for Hypersonic Conservation
Laws,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 357–393.

24Yee, H. C., “A Class of High-Resolution Explicit and Implicit Shock-
Capturing Methods,” Lecture Series for Computational Fluid Dynamics, von
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