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The vortical flow dynamics in a gas-turbine swirl injector were investigated by means of large eddy
simulations. The flow enters the injector through three sets of radial-entry, counter-rotating swirl
vanes. The formulation treats the Favre-filtered conservation equations in three dimensions along
with a subgrid-scale model, and is solved numerically using a density-based, finite-volume approach
with explicit time marching. Several methods, including proper orthogonal decomposition, spectral
analysis, and flow visualization, are implemented to explore the flow dynamics in the complex
three-dimensional flowfields. Various underlying mechanisms dictating the flow evolution, such as
vortex breakdown, the Kelvin–Helmholtz instability, and helical instability, as well as their
interactions, are studied for different swirl numbers. The flowfield exhibits well-organized motion in
a low swirl-number case, in which the vortex shedding arising from shear instabilities downstream
of the guide vanes drives acoustic oscillations of the mixed first tangential and first radial mode. The
flowfield, however, becomes much more complicated at high swirl numbers, with each sub-regime
dominated by different structures and frequency contents. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1874892g

I. INTRODUCTION

Swirl injectors are commonly used in modern gas-
turbine engines to achieve efficient and clean combustion.
In addition to its primary functions of preparing a combus-
tible mixture and stabilizing the flame, the injector acts as
a sensitive element that may generate and modulate flow
oscillations in the chamber through the following three
mechanisms. First, the internal flow evolution in an in-
jector is intrinsically unsteady and involves a wide variety
of structures with different time and length scales. These
structures, when convected downstream, can easily interact
with the flowfield near the injector exit and modify
the local flame-zone physiochemistry. Second, the injector
flow dynamics dictate the liquid-sheet breakup and drop-
let formation processes, and subsequently affect the fuel
distribution. Third, the injector flow may interact reson-
antly with the acoustic waves in the combustor. The coupling
often leads to large flow oscillations in the chamber, a
phenomenon commonly referred to as combustion
instability.1,2

Most previous studies on combustion instabilities in
liquid-fueled propulsion systems focused either on thermal-
acoustic interactions in the chamber using analytical
approaches,3 or on detailed flow evolution and flame dynam-
ics using comprehensive modeling techniques, such as large-
eddy simulations.4–6 The dynamic behavior of an injector
was loosely modeled with an acoustic admittance function at
the injector exit, whose specific value was treated as an em-
pirical coefficient. Very limited effort was applied to examine

the injector internal flow evolution and its response to exter-
nally imposed forcing, although liquid-propellant rocket in-
jectors have been investigated using an analytical approach
augmented by experimental data.7

The purpose of the present work is to remedy this defi-
ciency by developing a comprehensive analysis of turbulent
swirling flows in a contemporary gas-turbine airblast injec-
tor. Several fundamental mechanisms dictating the flow evo-
lution, including vortex breakdown, the Kelvin–Helmholtz
instability, helical instability, and centrifugal instability, as
well as their mutual coupling, are carefully investigated. An
improved understanding of these fundamental flow phenom-
ena stands out as a prerequisite for successful development
of high-performance gas-turbine combustors. The previous
studies of injector dynamics using simplified models are far
from enough to reveal the flow physics in complex geom-
etries.

The injector considered herein consists of a mixing duct
and a fuel nozzle located coaxially at the head end,8 as
shown schematically in Fig. 1. The former includes a center
cylindrical passage and two annular passages, which are
spaced radially outward from the axial axis. Three radial-
entry swirlers, denoted asS1, S2, and S3, and counter-
rotating with each other, are located at the entrance. The
analysis is based on a large-eddy-simulationsLESd tech-
nique, which allows the flowfield to be resolved at a scale
sufficient to characterize the detailed flow evolution. Various
underlying mechanisms are examined in detail for two dif-
ferent swirl numbers. The study also provides the basis for
an exploration of the response of the injector flowfield to
external forcing.9
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II. THEORETICAL FORMULATION

A. Favre-filtered governing equations

A large-eddy-simulation technique is developed and
implemented in the present work, in which large-scale mo-
tions are calculated explicitly, whereas eddies with scales
smaller than the grid or filter size are modeled to represent
the effects of unresolved motions on resolved scales. The
formulation treats the Favre-filtered conservation equations
of mass, momentum, and energy in three dimensions, written
in the following conservative form:
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where overbars−d denotes the spatial-filtering operation and

tilde s,d the Favre-filtering operation, i.e.,f̃ ;rf / r̄. The
variablesr ,ui ,p,E,qi, andti j represent the density, velocity,
pressure, specific total energy, heat flux, and viscous stress,
respectively. The equation of state for an ideal gas is used.
The subgrid-scalessgsd terms are
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They are treated by means of the Smagorinsky model for
compressible flows proposed by Erlebacheret al.10 because
of its reasonable accuracy and simplicity in simulations of
turbulent flows in complex geometries. The anisotropic part
of the sgs stresses, Eq.s4d, is treated using the Smagorinsky
model,11 while the isotropic part,tkk

sgs, is modeled with a
formulation proposed by Yoshizawa,12
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The dimensionless quantitiesCR andCI are the compressible
Smagorinsky model constants. Yoshizawa12 proposed an
eddy-viscosity model for weakly compressible turbulent
flows, using a multi-scale, direct-interaction approximation
method, and suggestedCR=0.012 andCR=0.0066 based on
theoretical arguments. The Van Driest damping functionD is
used to take into account the inhomogeneities near the wall
boundary,13 and is expressed as

Dsy+d = 1 − expf− sy+/25d3g, s11d

wherey+=uty/n, ut=Ît̄w/ r̄, and t̄w denotes wall stress.
The subgrid energy flux term,Hj

sgs, is modeled as
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where H̃ represents the filtered specific total enthalpy. The
turbulent Prandtl number, Prt, takes a conventional value of
0.7.14 The sgs viscous diffusion term,si

sgs, is neglected in the
present study due to its small contribution in the energy
equation.15 The nonlinearity of the viscous stress term,Di

sgs,
and the heat flux term,Qi

sgs, is invariably neglected.16

B. Boundary conditions

The computational domain shown in Fig. 2 includes both
the injector interior and an external downstream region in
order to provide a complete description of the flow develop-
ment. The length and diameter of the external region are 15
and 8 times the injector diameter at the exit, respectively.
This region is sufficiently large to minimize the effects of
boundary conditions on the calculated injector flow evolu-
tion. The flow is subsonic throughout the entire domain.

The boundary conditions are specified according to the
method of characteristics. At the inlet, the pressure is deter-
mined using a one-dimensional approximation to the mo-
mentum equation in the direction normal to the inlet bound-

FIG. 1. Schematic of gas-turbine swirl injector with radial entry. Case 1:
S1=30°, S2=−45°, andS3=50°; case 2:S1=45°, S2=−60°, andS3=70°.
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ary. The mass flux, total temperature, axial velocity, and flow
angle are specified. Turbulence is provided by superimposing
broadband noise with a Gaussian distribution on the mean
velocity profile with an intensity of 8% of the mean quantity.
The effect of the inlet turbulence on the flow development
seems to be modest due to the strong shear layers and high-
intensity turbulence generated in the flowfield, which over-
shadow the influence of the incoming turbulence.

At the downstream boundarysline CD in Fig. 2d, ex-
trapolation of primitive variables from the interior may cause
undesired reflection of waves propagating into the computa-
tional domain. Thus, the non-reflecting boundary conditions
based on the characteristic equations, as proposed by Poinsot
and Lele,17 are applied. A reference pressure,p`, is utilized
to preserve the average pressure in the computational domain
using small amplitude acoustic waves. In the present study, a
uniform distribution ofp` is employed, since the azimuthal
velocity at the exit is relatively small.

The no-slip, adiabatic condition is applied along all the
solid walls inside of the injector. The slip, adiabatic condi-
tion is used along the boundariesAB andEF of the external
computation domain. Because the flow is exhausted to an
ambient condition after passing through the injector, the sur-
rounding air may be entrained into the computational do-
main. At the radial boundariesslines BC andDEd, the pres-
sure, total temperature, and axial velocity are specified. The
laws of conservation of mass and angular momentum are
employed to determine the radial and azimuthal velocities,
respectively.

III. NUMERICAL METHOD

The theoretical formulation outlined above is solved nu-
merically by means of a density-based, finite-volume meth-
odology. Wang18 recently extended the approaches of Fabig-
non et al.19 and Apte and Yang20 to study the numerical
accuracy of several explicit time-marching algorithms within
the context of LES. The numerical dissipation arising from
the discretization of convective terms and artificial viscosity
were assessed by introducing a reference turbulent kinetic
energy spectrum obtained from isotropic turbulence theory.
Results indicated that the numerical dissipation of a density-
based approach in simulations of turbulent flows at low
Mach numbers is insensitive to the specific time-marching
scheme selected. This may be attributed to the fact that the
maximum allowable time step for a density-based scheme is
much smaller than the turnover time of grid-sized eddy, due

to the large disparity in the eigenvalues for low Mach-
number flows. For example, the spectrum of turbulent kinetic
energy calculated using the Adam–Bashforth predictor-
corrector scheme is almost identical to that calculated using a
four-step Runge–Kutta scheme, as will be shown later. In
light of this finding, the present work employs the Adam–
Bashforth scheme for temporal discretization, to save com-
puting time. Spatial discretization of the convective terms is
achieved using a fourth-order central difference scheme
along with sixth-order artificial dissipation in generalized
coordinates.21

To minimize the contamination originating from numeri-
cal dissipation, the coefficient of the sixth-order dissipation
terms was carefully selected to bee6=0.001. When the SGS
terms were turned off, unphysical oscillations took place in
the flowfield. For example, at the location ofx=21 mm, y
=14 mm, andz=0 mm in the case with a high swirl number
to be discussed later, the axial velocity in the main flow
passage fluctuated between −5 and 100 m/s, whereas the
long-time mean velocity was 70 m/s. A further decrease in
the numerical dissipation coefficient resulted in an overflow
of the calculation. When the SGS terms were activated, the
solution was stable even if the numerical dissipation was
reduced by half. This suggests that the numerical method and
grid resolution employed in the present study did not give
rise to a dissipative solution.

A multi-block domain-decomposition method is imple-
mented to facilitate parallel processing in a distributed com-
puting environment using the Message Passing Interface
sMPId library. The overall approach has been validated by
Apte and Yang,20,22 Huanget al.,23 and Luet al.,24 against a
variety of vortical flow problems to establish its credibility.

The code was further validated against two flow configu-
rations with complex geometries. The first study dealt with a
LES of turbulent swirling flows injected into a dump
chamber,24 simulating the experiments by Favaloroet al.25 A
swirler with 12 circular inlet guide vanes is located at 50.8
mm upstream of the dump plane. The temperature and pres-
sure at the entrance are 300 K and 1 atm, respectively. The
height of the backward-facing step isH=25.4 mm. The Rey-
nolds number is 1.253105 based on the inlet diameter of
101.6 mm and centerline velocity 19.2 m/s. Owing to the
lack of reliable data for the flow conditions at the entrance,
the inlet velocity profiles were tuned to match the experi-
mental data at the first measurement positionsx/H=0.38d.
Reasonable agreement between simulations and measure-
ments was obtained in terms of mean velocity components
and turbulence intensities. The second validation case treated
the flow evolution in a twin-swirler injectorsi.e., General
Electric CFM56 aero-engine injectord. The system includes
eight counterclockwise elliptical primary swirl jets, ten
clockwise secondary swirl vanes, a venturi, and a flare. The
inlet flow pressure and temperature are 1 atmosphere and
291 K, respectively. The diameter,D0=27 mm, and mean
axial velocity, U0=30 m/s, at the downstream side of the
secondary swirl vanes are selected as the characteristic
length and velocity, respectively. The corresponding Rey-
nolds number is 5.43104. Excellent agreement was obtained
with experimental data. The length of the central recircula-

FIG. 2. Overall computational domain.
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tion zone is identical to the measured value. The maximum
discrepancies of mean velocity components and turbulence
intensities between simulations and measurements are, re-
spectively, about 0.1 and 0.05U0 at the injector exit and less
than 0.05 and 0.02U0 at an axial location one injector diam-
eter downstream of the exit.

IV. FLOW CONFIGURATION AND GRID SYSTEM

The mixing duct in the injector, shown in Fig. 1, has a
diameter ofD0=32 mm at the exit. Two different sets of
swirl vanes are considered. The low swirl-number case has
swirl vane angles ofS1=30°,S2=−45°, andS3=50°, and the
high swirl-number case hasS1=45°, S2=−60°, andS3=70°.
The corresponding swirl numbers, defined as the ratio of the
axial flux of angular momentum to the production of the
axial flux of axial momentum and the injector diameter, are
0.35 and 0.49, respectively, at the injector exit. The baseline
flow condition includes an ambient pressure of 1 atm, an
inlet temperature of 293 K, and a mass flow rate of
0.077 kg/s. The Reynolds number based on the diameter and
the bulk axial velocity at the exit is 23105.

A three-dimensional grid system is generated by rotating
a two-dimensional grid around the centerline. The entire grid
system has two million cells, of which 0.9 million grids are
located within the injector. The mean grid size within the
injector interior is around 0.2 mm, which is sufficient to
resolve the turbulence length scales in the inertial sub-range
of the turbulent energy spectrum, as will be discussed later.
The spatial resolution near the wall falls in the range of 3
,y+,10, which is roughly within the viscous sub-layer re-
gion.

A grid independence study was performed as part of the
validation procedure. A refined mesh with 3.2 million grid
points was considered. The node numbers in the axial and
radial directions were increased by 20% and 30%, respec-
tively. The average grid size inside the injector was reduced
by 17%. The external computational domain was also ex-
panded to examine the effects of the outflow boundary con-
ditions. Figure 3 shows the calculated streamlines and azi-
muthal velocity field on a longitudinal plane for the two grid

systems. With an increase of 50% computational cells, the
mean velocity components and turbulence intensities only
vary by 1% and 2% of the bulk velocity at the injector exit,
respectively. The frequency spectrum of the pressure field
indicates an identical dynamic behavior. The grid system
adopted in the present work appears to be credible.

A total of 54 computational blocks are used to facilitate
parallel processing. The physical time step is 5310−5 ms
and the maximum CFL number is 0.8. For each case, the
calculation is first conducted for an extended period until the
flowfield reaches its stationary state. The time stamp is then
reset, and data are collected for more than 30 flow-through
times si.e., 20 msd to obtain statistically meaningful turbu-
lence properties.

Figure 4 shows the spectra of the turbulent kinetic en-
ergy at a probe in the main flow passage, calculated using
both the Adam–Bashforth predictor-correctorsABd and the
four-step Runge–KuttasRK4d schemes. The wave number is
denoted byk. The Kolmogorov scalesh,D0 Re−3/4d is 3 µm
and the Taylor scaleslT,D0 Re−1/2d 70 µm, based on the
Reynolds number. Here Taylor’s hypothesis26 is applied to
approximate spatial correlations with temporal correlations,
since the original data are the velocity-time traces at single
points, from which spatial correlations cannot be directly de-
rived. An accuracy conversion based on this hypothesis is
limited to homogeneous turbulence with small intensity.27

Although the present study does not satisfy this strict con-
straint, it still can be regarded as a good reference for data
analysis. The large scales on the order of the characteristic
length, D0, are aroundh /D0,10−4, and most of turbulent
kinetic energy is carried by flow motion with normalized
scales less than 10−3, as evidenced in Fig. 4. The result fol-
lows the Kolmogorov–Obukhov spectrums−5/3 lawd in the
high wave number regime, and the grid size employed in the
present study is located in the inertial sub-range of turbu-
lence.

V. RESULTS AND DISCUSSION

Figure 5 shows snapshots of the vorticity-magnitude
fields on two cross sections for both the low and high swirl

FIG. 3. Comparison of flowfields simulated using different grids.sad
Pseudo-streamlines based on mean axial and radial velocities; andsbd con-
tours of mean azimuthal velocity. Contour levels between −90 and 160 m/s
with increment of 10 m/s. High swirl numbersS=0.49d.

FIG. 4. Spectra of turbulent kinetic energy atx=16.3 mm,y=9.9 mm, and
z=0.0 mm.
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numbers. The flow evolution exhibits several distinct fea-
tures, as follows. First, the flowfield is essentially irrotational
after passing through the radial-entry swirl vanes. The weak
vorticity downstream of the inlet arises from the imposed
broadband noise simulating the inflow turbulence. Strong
vorticity then develops in the boundary layers near the walls,
and in the regions downstream of the guide vanes and the
centerbody, due to the large velocity difference in the shear
layers.

Second, when the flow travels downstream of the center-
body, the strong swirling motion and its associated centrifu-
gal force produces large radial pressure gradients, which then
induce a low-pressure core around the centerline. As the flow
expands and the azimuthal velocity decays with the axial
distance, the pressure is recovered. A positive pressure gra-
dient is consequently generated in the axial direction and
leads to the formation of a central recirculating flow, a phe-
nomenon commonly referred to as vortex breakdown or vor-
tex burst. The resultant flow detachment from the rim of the
centerbody gives rise to a vorticity layer, which subsequently
rolls, tilts, stretches, and breaks up into small eddies. These
small vorticity bulbs interact and merge with the surrounding
flow structures while being convected downstream. The en-
tire process is highly unsteady and involves a wide range of
length and time scales.

Third, because of the opposition of the swirler vane
angles, two counter-rotating flows with different velocities in
the streamwise and azimuthal directions merge at the trailing
edges of the guide vanes. Vortices are generated in the shear-
layer regions and shed downstream sequentially due to the
Kelvin–Helmholtz instabilities. In comparison with the
vortex-breakdown-induced central recirculating flow, the

flow structures associated with the periodic vortex shedding
in the outer region are small and well organized. The shear-
layer instability, along with the helical and centrifugal insta-
bilities, induces large asymmetric structures on the transverse
plane.

Finally, the aforementioned flow structures in various
parts of the injector and their underlying mechanisms inter-
act and compete with each other. When the swirl number
changes, the dominant instability mode may switch corre-
spondingly. A detailed analysis of these phenomena will be
delivered in the following sections.

FIG. 6. sColord. Instantaneous iso-surfaces of azimuthal velocities atuu

=10 and 50 m/s.sad Low swirl number andsbd high swirl number.

FIG. 5. sColord. Snapshots of vorticity magnitude contours.sad Low swirl
number andsbd high swirl number.
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A. Vortex breakdown

Much insight into the vortex breakdown in the core flow
region can be obtained from the iso-surfaces of the azimuthal
velocity shown in Fig. 6. In the low swirl-number case, a
stable bubble type of vortex breakdown is clearly observed
in the downstream region of the centerbody, whereas a much
more complex structure prevails at the high swirl number.
The streamlines and the axial velocities of the mean flow-
fields given in Figs. 7 and 8, respectively, reveal the forma-
tion of a central toroidal recirculation zone in this region
quantitatively. As the swirl number increases, the size of the
recirculation zone becomes greater accordingly. The stagna-
tion point of the vortex breakdown moves upstream for an
equilibrium position and finally reaches the centerbody. The
local flow development depends on the relative magnitudes
of the downward momentum inertia of the incoming flow
and the outward flow motion arising from the centrifugal
force. Although the former remains almost the same due to
the fixed inlet mass flow rate employed in the present study,
the weaker centrifugal force in the low swirl-number case
causes the incoming flow to penetrate all the way to the core
region, as evidenced in Fig. 7. The ensuing flow structure
bears a close resemblance to a tornado near the ground where
a large accumulation of vorticity in the center region takes
place, a kind ofcollapseof the swirling flow.28

The difference in the flow topology affects the pressure
and velocity development considerably. The situation can be
explained based on the momentum balance in the radial di-
rection as follows:

]p

]r
, fc ,

ruu
2

r
, s13d

where fc denotes the centrifugal force anduu the azimuthal
velocity. The maximum mean azimuthal velocities and their
corresponding radial locations are 157 m/s at 5.0 mm for the
high swirl number and 151 m/s at 2.3 mm for the low swirl
number, respectively, near the centerbody. The smaller radius
si.e., 2.3 mmd in the low swirl-number case results in a mini-
mum pressure of 78 kPa, which is even lower than that in the
high swirl-number case, 88 kPa. This phenomenon contra-
dicts the usual assumption that a stronger swirling flow in-
duces a lower pressure in the core region. Not only swirl
strength but also flow topology determine the local flow evo-
lution. At the same time, the no-slip condition results in rela-
tively high pressure in the wall region. The resultant negative
pressure gradient in the axial direction leads to a strong jet
along the centerline downstream of the centerbody. The flow
accelerates rapidly from 0 to 125 m/s within 2.2 mm.18 This
phenomenon was not observed in the high swirl-number
case. Instead, a large central recirculating flow is established
in the same region.

The formation of the central toroidal recirculation zone,
which is attached to the centerbody in the high swirl-number
case, mainly results from the vortex breakdown. The wake
downstream of the centerbody exerts a very limited influence
on the flow reversal since it is not observed even in the low
swirl-number case. Two points should be mentioned here.
First, in general, both the swirl and the wake contribute to
the generation of a flow reversal. A slight change in the cen-
terbody geometry may greatly alter the local flow develop-
ment and the injector dynamics. Care must therefore be ex-
ercised in designing the injector configuration. Second, the
streamline topology shown in Fig. 7 dictates the effective
flow-passage area, which plays an important role in deter-
mining the injector dynamics, as will be elaborated later.

The temporal evolution of the flowfield permits insight
into the vortex breakdown phenomenon. Figure 9 shows in-
stantaneous streamlines on a longitudinal plane, spatially av-
eraged in the azimuthal direction, at various times during a
typical flow evolution period for the high swirl-number case.
Uneven time intervals between frames were chosen to show

FIG. 7. Streamlines of mean flowfields for swirl numbers ofS=0.35 and
0.49.

FIG. 8. Contours of mean axial velocity for swirl numbers ofS=0.35 and
0.49. Contour levels between −30 and 125 m/s with increment of 5 m/s.
Solid lines: positive values; dashed lines: negative values.

FIG. 9. Close-up views of streamlines downstream of centerbody for high
swirl-number case ofS=0.49. Flowfields spatially averaged in azimuthal
direction. The time interval between pictures is not constant.
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the important phases of the oscillation. Obviously, the spa-
tially averaged flow structures are more distinguishable than
those of the original three-dimensional flowfield, which is
too complex to allow an effective analysis. Two large vorti-
ces exist in the region downstream of the centerbody, and
evolve in two different forms. First, between 14.45 and 14.85
ms, a small vortex separates from its parent structure, travels
downstream, and eventually coalesces with the large vortex
located in the downstream region. In a later stage, between
15.25 and 15.85 ms, a small vortex is generated in front of
the array of vortices and the large vortex, which is normally
anchored at the centerbody, is detached, causing a switch in
the flow topology. The instantaneous flow pattern at 15.85
mm is considerably different from its time-mean counterpart,
and bears a close resemblance to the situation for the low

swirl-number case, in which a strong wall jet exists in the
wake of the centerbody and the incoming flow can penetrate
deeply into the core region. The temporal variation in the
vortical structure affects the injector characteristics through
its influence on the effective flow-passage area.

B. Outer shear-layer instability

Vortex shedding arising from the Kelvin–Helmholtz in-
stabilities in both the axial and azimuthal directions takes
place at the trailing edges of the guide vanes. Figure 10
shows the iso-surfaces of the azimuthal velocity at 10 m/s in
the phase space, i.e., the physical domain is unwrapped in
the azimuthal direction, illustrating the shear-layer evolution
in the outer region of the injector flowfield. For the low
swirl-number case, small-amplitude instability waves are ini-
tiated as soon as the flows merge at the rim of the guide
vane. These waves then develop to large-scale billows, be-
come distorted into hairpin structures, and finally break up
into small eddies in the downstream region of the mixing
layer due to turbulent mixing.

The dominant frequency of the vortex shedding due to
the Kelvin–Helmholtz instability in the streamwise direction
can be estimated using the formula given in Ref. 29,

fn = St
Ū

u
, s14d

where the Strouhal number, St, is 0.044–0.048 for turbulent

flows. In the present study, the mean velocity,Ū, is 50 m/s,
and the momentum thickness of the shear layer,u, is around
0.2 mm for both swirl numbers. The frequency of the most
unstable mode,fn, is estimated to be 13104 Hz. This value
is comparable with the numerically calculated instability fre-
quency of 13 000 Hz using the spectral analysis described in
Sec. V E, further demonstrating that the outer shear flow
dynamics is dictated by the Kelvin–Helmholtz instability in
the streamwise direction in the low swirl-number case.

The situation is vastly different in the high swirl-number
case. As a result of the strong shear force and the associated
Kelvin–Helmholtz, helical, and centrifugal instabilities in the
azimuthal direction, the flow becomes highly disordered

FIG. 10. Iso-surface of azimuthal velocity atuu=10 m/s in azimuthal phase
spacesu=0°–360°d. sad Low swirl number andsbd high swirl number.

FIG. 11. Snapshots of azimuthal velocity fields on four
transverse cross sections, contour levels between −70
and 120 m/s with increment of 10 m/s. Solid lines:
positive values; dashed lines: negative values.sad Low
swirl number andsbd high swirl number.
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soon after the incoming streams merge together in the region
downstream of the guide vanes. The interaction between the
outer shear layer and the central toroidal recirculating flow
also contributes to the eddy breakup and mixing processes.

The flow evolution in the azimuthal direction, as shown
in Fig. 11, clearly indicates the existence of an outer shear
layer due to the counter-rotating flows through the first and
second passages and a center recirculating flow induced by
the vortex breakdown. For the low swirl-number case, the
azimuthal velocity remains almost uniform up tox=11 mm,
in spite of the small-scale turbulence embedded in the inlet
flow. Large organized structures then develop under the ef-
fect of the Kelvin–Helmholtz instability when the incoming
streams merge together. The situation becomes more obvious
for the high swirl-number case. The center recirculating flow
even intersects the outer shear layer, causing a complex
flowfield near the injector exit.

C. Helical instability

In spite of the flow symmetry at the inlet, periodic flow
oscillations develop in the azimuthal direction due to the
strong shear force in this direction. To facilitate discussion,
each flow variable can be expressed using a Fourier series in
the cylindrical coordinate systemsx,r ,ud,

fsx,r,u,td = o
m=`

−`

fmsx,r,tdexpsimud, s15d

wherem is the wave number in the azimuthal direction, and
fm the Fourier coefficient.m=0 represents the axisymmetric
mode, and the otherssmÞ0d the helical modes. As will be
shown later based on proper-orthogonal-decomposition
sPODd analysis, them=−1 helical mode dominates the flow-
field at x=15 mm in the low swirl-number case, suggesting
that the helical wave rotates in the opposite direction of the
swirling flow. Lessenet al.30 and Martin and Meiburg31

found that the counter-rotating helical wavessm,0d are
more unstable in swirling jets. The helical-mode oscillation
propagates in the azimuthal direction at a speed much faster
than that of the mean flow.

Helical motions are not so evident in the high swirl-
number case. The interaction between the center recirculat-
ing flow and the outer shear layer gives rise to a complex
flow structure that tends to suppress the prevalence of
simple, well-defined harmonic oscillations.

D. Interaction and competition of instability modes

As mentioned above, three major flow mechanisms, i.e.,
vortex breakdown, Kelvin–Helmholtz instability, and helical
instability, exist and interact with each other within the in-
jector. The specific type of coupling depends on the swirl
number and can be classified into two categories. First, the
outer shear-layer may interact with the large disorganized
structures arising from the evolution of the central recircu-
lating flow when the swirl number exceeds a threshold value,
as evidenced in Fig. 5. The interaction usually increases with
increasing swirl number and varies within each flow evolu-
tion period. The vortex shedding tends to be more organized
when the center recirculation zone shrinks, and vice versa.
The spatial distributions of turbulent kinetic energy, shown
in Fig. 12, also demonstrate this interaction. The turbulent
kinetic energy in the central recirculation zone and the wake
of the guide vanes is much greater than that in the rest of the
domain because of vigorous vortical motions in these re-
gions. The two shear layers are distinctly separate in the low
swirl-number case, but merge in the high swirl-number case.
Since fuel is delivered into the injector from the centerbody,
the high turbulence intensity in this region can significantly
enhance the atomization of the injected liquid fuel. At the
same time, the strong shear stress in the downstream region
of the second guide vane promotes rapid mixing between the
air and the fuel impinging and accumulating on the second
guide vane.

In the second type of flow coupling, the instability waves
in the axial and azimuthal directions in the outer shear layer
compete with each other. In the low swirl-number case, the
streamwise instability dominates the shear-layer evolution;
therefore, the billow structures and subsequent hairpin vorti-
ces prevail in the flowfield. In the high swirl-number case,
the development of the billows is suppressed and flow struc-
tures are severely distorted by the azimuthal flow instabili-
ties.

Several other competing mechanisms may also exist in
the flowfield, such as the one involving the Kelvin–
Helmholtz and centrifugal instabilities. Swirling flows usu-
ally result in an unstable radial stratification, thereby leading
to centrifugal instability,31 which is enhanced by a higher
azimuthal velocity gradient and further influences the
streamwise Kelvin–Helmholtz instability in the outer shear
layer, as shown in Fig. 11.

FIG. 12. Distributions of turbulent kinetic energy at
swirl numbers ofS=0.35 and 0.49. Contour levels be-
tween 1 and 3500 m2/s2 with an exponential
distribution.
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E. Spectral analysis

The injector dynamics involve an array of intricate flow
processes characterized by a wide range of time and length
scales. Quantitative information can be obtained using spec-
tral and proper-orthogonal-decomposition analyses. To this
end, extensive effort was made to conduct measurements of
flow properties at 626 locations.

Figure 13 shows the frequency spectra of pressure oscil-
lations along the main flow passage for the low swirl-number
case. A dominant frequency of 13 000 Hz is clearly ob-
served, corresponding to the most amplified mode of the
shear-layer instability downstream of the first guide vane.
The oscillation reaches its maximum at probe 1-2 where the
shear-layer structure arising from the Kelvin–Helmholtz in-
stability is highly organized. As the flow travels downstream,
the development of the hairpin vortices reduces the flow co-

herence in the azimuthal direction. This effect, along with the
growth of vortices in the shear layer, results in a decreased
amplitude of flow oscillation at probe 1-4. Figure 14 shows
the spectral contents in the outer region of the central recir-
culation zone. A dominant frequency of 5783 Hz is observed,
corresponding to the precession of the vortex coresPVCd.
The phenomenon is confirmed by visual inspection of the
flow evolution data. Although the long-time mean flowfield
associated with vortex breakdown is axisymmetric, the in-
stantaneous flowfield is highly time-dependent. PVC is one
of the primary unsteady flow motions when the vortex break-
down occurs in the high-Reynolds-number flow regime, as in
turbulent swirling flows in cyclone chambers and combus-
tion devices. It is normally located in the boundary of the

FIG. 14. Frequency spectra of pressure oscillations in outer region of central
recirculation zone, low swirl numbersS=0.35d.

FIG. 15. Frequency spectra of pressure oscillations along main flow pas-
sage, high swirl numbersS=0.49d.

FIG. 16. Frequency spectra of pressure oscillations in outer region of central
recirculation zone, high swirl numbersS=0.49d.

FIG. 13. Frequency spectra of pressure oscillations along main flow pas-
sage, low swirl numbersS=0.35d.
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recirculation zone between the zero velocity and the zero
streamline.32,33 In the downstream region, turbulent diffusion
and flow expansion prevail.

The flow motion becomes broadband in nature, and no
dominant oscillation can be found. The situation is qualita-
tively different for the high swirl-number case, as shown in
Figs. 15 and 16. As a consequence of the strong interactions
between the outer shear layer and the central recirculation
zone, the spectral content of the flowfield becomes very rich,
and is characterized by several different frequencies in vari-
ous regions. A low-frequency mode around 500 Hz domi-
nates the flow oscillations near the inletsprobes 1-1 and 1-2d,
whereas high-frequency modes around 4000 Hz prevail in
the downstream regionsprobe 1-4d. The former may be at-
tributed to the flow displacement effect of the central recir-
culation zone, as evidenced in Fig. 9. The occurrence of the
4000 Hz oscillation at the injector exit can be better ex-
plained by considering the flow development along the
boundary of the central recirculation zone in Fig. 16ssee
probes 4-1 through 4-4d. A harmonic around 1500 Hz is ob-
served in the mixing layer downstream of the first guide vane
and its amplitude increases in the further downstream region.
This frequency, as indicated in subsequent work,9 corre-
sponds to the resonance frequency of the injector in response
to external forcing at a high swirl number. The prevalence of
distinct frequencies in different regions suggests that the flow
instability mechanisms vary in different regions, a phenom-
enon consistent with Martin and Meiburg’s expectation.31

Figure 17 shows the frequency spectra of the velocity
and pressure oscillations within the central recirculation zone
sx=28.5 mm, y=5.7 mm, z=0.0 mmd for the high swirl-
number case. The radial velocity fluctuation is intimately
coupled with the pressure oscillation compared with the
other two velocity components. A major factor contributing
to this phenomenon is the large radial pressure gradient
caused by the swirling flow. A small velocity disturbance in
the radial direction,ur8, results in a relatively large pressure
disturbance,p8. Most of the past research focused on the
axial and azimuthal velocity fields, instead of the radial ve-
locity, due to their overwhelmingly large values in a swirling

flow. The present result, however, indicates that the fluctua-
tions in the radial direction may dominate the unsteady ve-
locity evolution, and play an important role in driving pres-
sure oscillations.

F. Proper orthogonal decomposition analysis

The injector dynamics were further explored using the
proper orthogonal decompositionsPODd technique, which
extracts energetic coherent structures from the calculated
flowfields. For a given flow property,fsx ,td, the POD analy-
sis can determine a set of orthogonal functionsw j, j =1, 2,
…, such that the projection off onto the firstn functions

f̂sx,td = f̄sxd + o
j=1

n

ajstdw jsxd s16d

has the smallest error, defined asEsuuf − f̂ uu2d. Here,ajstd rep-
resents the temporal variation of thej th mode, andEs·d and
uu ·uu denote the time average and a norm in theL2 space,
respectively. The functionf can be extended to a vector,F
=fu,v ,w,pgT, by introducing an appropriate inner product
on F. A more complete discussion of this subject can be
found in Refs. 34 and 35.

Because of the limitations of data storage for the calcu-
lated flowfields over an extended time period, the POD
analysis was only conducted for the velocity fields on one
longitudinal and two transverse planes. A total of 850 snap-
shots spanning a time period of 8.5 ms and 1000 snapshots
over 10 ms were recorded for the low and high swirl-number
cases, respectively. The temporal resolution is 10−2 ms and
the corresponding cutoff frequency is 53104 Hz. The inner
product of functions,F, is defined as the kinetic energy and
the method of snapshots is implemented to compute the POD
modes.

1. Low swirl number

Figure 18 shows the energy distribution of the POD
modes on a longitudinalsx–rd plane for the low swirl-
number case. Here the energy of thej th mode,Ej, is defined
as

FIG. 17. Frequency spectra of pressure and velocity oscillations within cen-
tral recirculation zonesx=28.5 mm, y=5.7 mm, z=0.0 mmd, high swirl
numbersS=0.49d.

FIG. 18. Energy distribution of POD modes on longitudinalsx–rd plane, low
swirl numbersS=0.35d.
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Ej ; Esuuajstdw jsxduu2d. s17d

Figure 19 shows the spatial distributionssi.e., mode shapes,
f jd of the first four POD modes. The first two modes have
almost the same energy levels21.0% and 20.6%d and ac-
count for more than 40% of the total energy of the fluctuat-
ing velocity field. This suggests that the flow structure due to
vortex shedding in the outer shear layer is dominant in the
streamwise direction. The phase differences between the first
two modes in both time and space arep /2. The local mean
streamwise velocity,Uv, wavelength,lv, and frequency,fv,
satisfy the relation offv,Uv /lv along the outer shear layer,
suggesting the existence of a well-organized vortical wave in
the wake of the first guide vane. Here the wavelength is
defined as the distance between the two adjacent coherent
structures. The frequency spectra of the time-varying coeffi-
cients,ajstd, of the first six modes are shown in Fig. 20. The
dominant frequency of the first two modes isf0=1.3
3104 Hz. Another important frequency of 5.73103 Hz is
observed in the third mode, which corresponds to the preces-
sion of the central recirculating flow based on the visual
evidence.

Figure 21 shows the pressure field of the first two POD
modes on the transverse plane atx=15 mm. The dominant
frequency is f0=1.33104 Hz, according to the spectral
analysis of the time-varying coefficients. The mode shape
bears a close resemblance to the mixed first-tangentials1Td
and first-radials1Rd mode of the acoustic motion. If the in-
jector interior geometry is approximated with a cylinder with
an average diameter of 19 mm, then a simple acoustic modal
analysis, without taking into account the mean-flow effects,
indicates that the eigen-frequency of the 1T/1R acoustic
mode is 1.53104 Hz, which is close tof0, assuming the
speed of sound to be 340 m/s for air at the room condition.
The result clearly shows that the shear-layer instability can
easily resonate with the acoustic field in the injector and
consequently lead to large excursions of flow oscillations,
provided their characteristic time scales match. Another im-
portant factor dictating the vortico-acoustic interaction is the
spatial location of the shear layer with respect to the acoustic
mode shape. An acoustic wave can be excited more effi-
ciently if the driving source is located at its antinodal posi-
tion. Similar phenomena were also observed by Huanget
al.23 and Luet al.24 in their studies of internal swirling flows.
A small flow oscillation arising in a shear layer tends to seek
a specific acoustic mode to interact, so long as thelock-in
requirements are fulfilled. In addition to the vortex shedding
in the wake of the first guide vane, there may exist other
mechanisms for exciting acoustic motions in the injector. For
example, the helical mode of hydrodynamic instability may
drive the first-tangential mode of the acoustic field. The outer
shear layer may trigger the first-radial mode of the acoustic
wave for certain injection geometries and flow conditions.

2. High swirl number

Figure 22 shows the azimuthal velocity fields of the first
six POD modes on a longitudinalsx–rd plane for the high
swirl-number case. The corresponding frequency contents
given in Fig. 23 reveal a much broader distribution compared
with the low swirl-number case. The first mode only ac-
counts for 6.8% of the total energy, as indicated in Fig. 24.
As a result of the strong swirling effect, the large-scale mo-
tion in the central recirculation zone dominates the flow de-
velopment, with a characteristic frequency of 4000 Hz. The
interactions between the shear layer downstream of the first
guide vane and the central recirculating flow also play a

FIG. 19. Spatial distributions of first four POD modessazimuthal velocity
fieldsd on longitudinal sx–rd plane, low swirl numbersS=0.35d. Contour
levels between −1000 and 1000 m/s with increment of 50 m/s. Solid lines:
positive values; dashed lines: negative values.

FIG. 20. Frequency spectra of temporal variations of first six POD modes,
low swirl numbersS=0.35d.

FIG. 21. Spatial distributions of first two POD modesspressure fieldd on
transverse plane atx=15 mm, low swirl numbersS=0.35d. Contour levels
between −18 000 and 18 000 Pa with increment of 2000 Pa. Solid lines:
positive values; dashed lines: negative values.
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prevalent role in the first four modes, with a characteristic
frequency around 1500 Hz. The fifth and sixth modes are
closely related to the streamwise Kelvin–Helmholtz instabili-
ties downstream of the first guide vane, with a dominant
frequency around 1.43104Hz. Their spatial distributions are
almost identical to the first two modes in the low swirl-
number case, but the energy level is severely suppressed un-
der the effects of the vortex-breakdown-induced recirculating
flow in the center region.

Figure 25 shows the mode shapes on the transverse
plane atx=15 mm. The alternating organized structures in
the outer shear layer results from the Kelvin–Helmholtz in-
stability in the azimuthal direction downstream of the first
guide vane. A dipole structure clearly exists near the center-
line in the first two modes, which transits to a quadrupole

structure in the fourth and fifth modes. This kind of helical
motion represents intrinsic flow instabilities associated with
the precession of the vortex core. They are decoupled from
the injector acoustic field since the characteristic frequencies
s2000 Hz for the first two POD modes and 4000 Hz for the
fourth and fifth modesd18 are much smaller than that of the
lowest transverse acoustic mode in the injectorsi.e., around
5000 Hz for the first tangential moded.

FIG. 22. Spatial distributions of first six POD modessazimuthal velocity
fieldsd on longitudinalsx–rd plane, high swirl numbersS=0.49d. Contour
levels between −1000 and 1000 m/s with increment of 50 m/s. Solid lines:
positive values; dashed lines: negative values.

FIG. 23. Frequency spectra of temporal variations of first six POD modes,
high swirl numbersS=0.49d.

FIG. 24. Energy distribution of POD modes on longitudinalsx–rd plane,
high swirl numbersS=0.49d.

FIG. 25. Spatial distributions of first six POD modesspressure contoursd on
transverse plane, high swirl numbersS=0.49d. Contour levels between
−60 000 and 60 000 Pa with increment of 2500 Pa. Solid lines: positive
values; dashed lines: negative values.
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VI. CONCLUSIONS

A comprehensive numerical analysis has been conducted
to investigate the vortical flow dynamics in a swirl injector
with radial entry. The formulation treats the Favre-filtered
conservation equations in three dimensions, with turbulence
closure achieved using a large-eddy-simulation technique.
Various fundamental mechanisms dictating the flow evolu-
tion, including vortex breakdown, Kelvin–Helmholtz insta-
bility, and helical instability, as well as their interactions,
were examined systematically for different swirl numbers.
Two distinct flow regions exist in the injector: the outer shear
layer, induced by the Kelvin–Helmholtz instability, and the
central toroidal recirculation zone, caused by vortex break-
down. The swirl number plays an important role in determin-
ing the injector dynamics. In the low swirl-number case, the
vortex shedding in the outer shear layer attunes the flow
oscillation in the bulk of the injector with a frequency of
1.33104Hz, whereas the central recirculating flow precesses
around the centerline at 5.73103Hz. A bulb type of double
vortex breakdown is clearly observed in the downstream re-
gion of the centerbody. The flow structures become much
more complicated with increasing swirl number. Higher
swirl velocity enhances the central recirculating flow as well
as the unsteady motion in the azimuthal direction, and sub-
sequently suppresses the development of the streamwise in-
stability in the outer shear-layer region. The interactions
among flow evolution process in various parts of the injector
also become stronger. As a result, the vortex breakdown phe-
nomena cannot be defined using a simple classification
scheme.
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